Datasets:
Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
ArXiv:
Tags:
knowledge-base
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Ascent KB: A Deep Commonsense Knowledge Base""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@InProceedings{nguyen2021www, | |
title={Advanced Semantics for Commonsense Knowledge Extraction}, | |
author={Nguyen, Tuan-Phong and Razniewski, Simon and Weikum, Gerhard}, | |
year={2021}, | |
booktitle={The Web Conference 2021}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset contains 8.9M commonsense assertions extracted by the Ascent pipeline (https://ascent.mpi-inf.mpg.de/). | |
""" | |
_HOMEPAGE = "https://ascent.mpi-inf.mpg.de/" | |
_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/" | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://nextcloud.mpi-klsb.mpg.de/index.php/s/dFLdTQHqiFrt3Q3/download" | |
# DONE: Name of the dataset usually match the script name with CamelCase instead of snake_case | |
class AscentKB(datasets.GeneratorBasedBuilder): | |
"""Ascent KB: A Deep Commonsense Knowledge Base. Version 1.0.0.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="canonical", | |
version=VERSION, | |
description="This KB contains <arg1 ; rel ; arg2> \ | |
assertions where relations are canonicalized based on ConceptNet relations.", | |
), | |
datasets.BuilderConfig( | |
name="open", | |
version=VERSION, | |
description="This KB contains open assertions of the form \ | |
<subject ; predicate ; object> extracted directly from web contents.", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "canonical" | |
def _info(self): | |
if self.config.name == "canonical": | |
features = datasets.Features( | |
{ | |
"arg1": datasets.Value("string"), | |
"rel": datasets.Value("string"), | |
"arg2": datasets.Value("string"), | |
"support": datasets.Value("int64"), | |
"facets": [ | |
{ | |
"value": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"support": datasets.Value("int64"), | |
} | |
], | |
"source_sentences": [{"text": datasets.Value("string"), "source": datasets.Value("string")}], | |
} | |
) | |
else: # features for the "open" part | |
features = datasets.Features( | |
{ | |
"subject": datasets.Value("string"), | |
"predicate": datasets.Value("string"), | |
"object": datasets.Value("string"), | |
"support": datasets.Value("int64"), | |
"facets": [ | |
{ | |
"value": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"support": datasets.Value("int64"), | |
} | |
], | |
"source_sentences": [{"text": datasets.Value("string"), "source": datasets.Value("string")}], | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# my_urls = _URLs[self.config.name] | |
# data_file = dl_manager.download_and_extract(my_urls) | |
data_file = dl_manager.download_and_extract(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_file, | |
"split": "train", | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
"""Yields examples as (key, example) tuples.""" | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
if self.config.name == "canonical": | |
data.pop("subject") | |
data.pop("predicate") | |
data.pop("object") | |
yield id_, data | |
else: # "open" | |
data.pop("arg1") | |
data.pop("rel") | |
data.pop("arg2") | |
yield id_, data | |