Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
10K - 100K
Tags:
movie_reviews
License:
BayanDuygu
commited on
Commit
•
8c02ed8
1
Parent(s):
8f167a8
Update README.md
Browse files
README.md
CHANGED
@@ -1,17 +1,65 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
-
task_categories:
|
4 |
-
- text-classification
|
5 |
language:
|
6 |
- tr
|
7 |
tags:
|
8 |
- movie_reviews
|
|
|
|
|
|
|
|
|
9 |
pretty_name: sinefil-movie-revs
|
10 |
size_categories:
|
11 |
- 10K<n<100K
|
12 |
---
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
size 28.7MB
|
16 |
-
lines 82,993
|
17 |
-
tokens 2.874.841
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
3 |
language:
|
4 |
- tr
|
5 |
tags:
|
6 |
- movie_reviews
|
7 |
+
task_categories:
|
8 |
+
- text-classification
|
9 |
+
task_ids:
|
10 |
+
- sentiment-classification
|
11 |
pretty_name: sinefil-movie-revs
|
12 |
size_categories:
|
13 |
- 10K<n<100K
|
14 |
---
|
15 |
|
16 |
+
# Sinefil Movie Reviews
|
17 |
+
|
18 |
+
A movie reviews sentiment analysis dataset for Turkish.
|
19 |
+
|
20 |
+
### Dataset Summary
|
21 |
+
Sinefil Movie Reviews offers Turkish sentiment analysis datasets that is scraped from popular movie reviews website Sinefil.com. The reviews include audience reviews about movies of all the time.
|
22 |
+
|
23 |
+
The score field takes values between 1 and 9.9. Values are like 8, 8.1, 8.2 .. 8.9. Here's the distribution divided into integer bins:
|
24 |
+
|
25 |
+
| star rating | count |
|
26 |
+
|---|---|
|
27 |
+
| 0.5 | 3.635 |
|
28 |
+
| 1.0 | 2.325 |
|
29 |
+
| 1.5 | 1.077 |
|
30 |
+
| 2.0 | 1.902 |
|
31 |
+
| 2.5 | 4.767 |
|
32 |
+
| 3.0 |4.347 |
|
33 |
+
| 3.5 | 6.495 |
|
34 |
+
| 4.0 |9.486 |
|
35 |
+
| 4.5 | 3.652 |
|
36 |
+
| 5.0 | 7.594 |
|
37 |
+
| total | 45.280 |
|
38 |
+
|
39 |
+
The star rating looks quite balanced. This dataset offers the challenge of understanding the sentiment in a refined way, dissecting the positive sentiment into "very positive" or "okayish positive".
|
40 |
+
|
41 |
+
|
42 |
+
### Dataset Instances
|
43 |
+
An instance of this dataset looks as follows:
|
44 |
+
|
45 |
+
```
|
46 |
+
{
|
47 |
+
"movie": "Avatar",
|
48 |
+
"text": "Açıkçası film beklentilerimi karşılayamadı. Tabi her şeyin ilki güzel ama son seride iyi olabilirdi. Filmde görsel olarak her şey güzeldi kendimi filmi izledikten sonra ıslanmış gibi hissettim :D Puan kırdığım noktalar filmin bilim kurgudan fantastiğe doğru kayması. Ardından sır kapısına döndürüp iyilik yapan iyilik bulur moduna girmesi. Çoğu sahnelerin çocuklara hitap etmesi. Neyse serinin üçüncü filmi sağlam olucak gibi...",
|
49 |
+
"rating": 3,5
|
50 |
+
}
|
51 |
+
```
|
52 |
+
|
53 |
+
|
54 |
+
### Data Split
|
55 |
+
|
56 |
+
| name |train|validation|test|
|
57 |
+
|---------|----:|---:|---:|
|
58 |
+
|Sinefil Movie Reviews|35280|5000|5000|
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
### Citation
|
63 |
+
|
64 |
+
Coming soon.
|
65 |
|
|
|
|
|
|