Datasets:

Languages:
Portuguese
ArXiv:
License:
File size: 7,240 Bytes
548923b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a50793
548923b
 
 
 
 
 
 
cfe1e9f
 
548923b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a50793
 
548923b
8a50793
 
 
548923b
8a50793
548923b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Quati dataset."""

import datasets


_CITATION = """
place holder
"""

_URL = "https://github.com/unicamp-dl/quati"

_DESCRIPTION = """
Quati ― Portuguese Native Information Retrieval dataset.
"""



QUATI_10M_DATASET_PARTS=["part_00", "part_01", "part_02", "part_03", "part_04"]



_URLS = {
    "quati_1M_passages": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_1M.tsv",
    "quati_10M_passages_part_00": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_00.tsv",
    "quati_10M_passages_part_01": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_01.tsv",
    "quati_10M_passages_part_02": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_02.tsv",
    "quati_10M_passages_part_03": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_03.tsv",
    "quati_10M_passages_part_04": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_04.tsv",
    "quati_1M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_1M_qrels.txt",
    "quati_10M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_10M_qrels.txt",
    "quati_test_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_test_topics.tsv",
    "quati_all_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_all_topics.tsv"
}



def generate_examples_passages(filepath):

    with open(filepath, encoding="utf-8") as input_file:
        for (idx, line) in enumerate(input_file):
            
            passage_id, passage = line.rstrip().split("\t")
            
            features = {"passage_id": passage_id,
                        "passage": passage}

            yield idx, features



def generate_examples_qrels(filepath):

    with open(filepath, encoding="utf-8") as input_file:
        for (idx, line) in enumerate(input_file):
            if idx > 0:
                query_id, _, passage_id, score = line.rstrip().split(" ")

                features = {"query_id": int(query_id),
                            "passage_id": passage_id,
                            "score": int(score)}

                yield idx - 1, features


def generate_examples_topics(filepath):

    with open(filepath, encoding="utf-8") as input_file:
        for (idx, line) in enumerate(input_file):
            query_id, query = line.rstrip().split("\t")

            features = {"query_id": int(query_id),
                        "query": query}

            yield idx, features



class Quati(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = (
        [
            datasets.BuilderConfig(
                name="quati_10M_passages",
                description="Portugues Brazilian passages, composing the complete Quati 10M dataset.",
                version=datasets.Version("1.0.0"),
            ),

            datasets.BuilderConfig(
                name="quati_1M_passages",
                description="Portugues Brazilian passages, composing the Quati 1M dataset.",
                version=datasets.Version("1.0.0"),
            ),

            datasets.BuilderConfig(
                name="quati_10M_qrels",
                description="Qrels for the annotated passages from the Quati 10M dataset.",
                version=datasets.Version("1.0.0"),
            ),

            datasets.BuilderConfig(
                name="quati_1M_qrels",
                description="Qrels for the annotated passages from the Quati 1M dataset.",
                version=datasets.Version("1.0.0"),
            ),

            datasets.BuilderConfig(
                name="quati_test_topics",
                description="50 test topics, corresponding to Quati dataset qrels.",
                version=datasets.Version("1.0.0"),
            ),

            datasets.BuilderConfig(
                name="quati_all_topics",
                description="All 200 topics created for the Quati dataset, including the 50 ones corresponding to Quati dataset qrels.",
                version=datasets.Version("1.0.0"),
            )
        ]
        + [
            datasets.BuilderConfig(
                name="quati_10M_passages_{}".format(which_part),
                description="Portugues Brazilian passages, composing the Quati 10M dataset {}.".format(which_part),
                version=datasets.Version("1.0.0"),
            )
            for which_part in QUATI_10M_DATASET_PARTS
        ]
    )

    DEFAULT_CONFIG_NAME = "quati_1M_passages"


    def _info(self):
        name = self.config.name
        if "passages" in name:
            features = {
                "passage_id": datasets.Value("string"),
                "passage": datasets.Value("string"),
            }
        elif name.endswith("qrels"):
            features = {
                "query_id": datasets.Value("int32"),
                "passage_id": datasets.Value("string"),
                "score": datasets.Value("int32"),
            }
        else:
            features = {
                "query_id": datasets.Value("int32"),
                "query": datasets.Value("string"),
            }

        return datasets.DatasetInfo(
            description=f"{_DESCRIPTION}\n{self.config.description}",
            features=datasets.Features(features),
            supervised_keys=None,
            homepage=_URL,
            citation=_CITATION,
        )


    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        if self.config.name == "quati_10M_passages":

            urls = {which_part: _URLS["quati_10M_passages_{}".format(which_part)] for which_part in QUATI_10M_DATASET_PARTS}

            dl_path = dl_manager.download_and_extract(urls)

            return [datasets.SplitGenerator(name="quati_10M_passages_{}".format(which_part), gen_kwargs={"filepath": dl_path[which_part]}) for which_part in QUATI_10M_DATASET_PARTS]

        else:
            url = _URLS[self.config.name]
            dl_path = dl_manager.download_and_extract(url)

            return (datasets.SplitGenerator(name=self.config.name, gen_kwargs={"filepath": dl_path}),)


    def _generate_examples(self, filepath, args=None):
        """Yields examples."""

        if "passages" in self.config.name:
            return generate_examples_passages(filepath)
        
        if self.config.name.endswith("qrels"):
            return generate_examples_qrels(filepath)
        
        else:
            return generate_examples_topics(filepath)