File size: 7,240 Bytes
548923b 8a50793 548923b cfe1e9f 548923b 8a50793 548923b 8a50793 548923b 8a50793 548923b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Quati dataset."""
import datasets
_CITATION = """
place holder
"""
_URL = "https://github.com/unicamp-dl/quati"
_DESCRIPTION = """
Quati ― Portuguese Native Information Retrieval dataset.
"""
QUATI_10M_DATASET_PARTS=["part_00", "part_01", "part_02", "part_03", "part_04"]
_URLS = {
"quati_1M_passages": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_1M.tsv",
"quati_10M_passages_part_00": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_00.tsv",
"quati_10M_passages_part_01": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_01.tsv",
"quati_10M_passages_part_02": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_02.tsv",
"quati_10M_passages_part_03": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_03.tsv",
"quati_10M_passages_part_04": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_04.tsv",
"quati_1M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_1M_qrels.txt",
"quati_10M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_10M_qrels.txt",
"quati_test_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_test_topics.tsv",
"quati_all_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_all_topics.tsv"
}
def generate_examples_passages(filepath):
with open(filepath, encoding="utf-8") as input_file:
for (idx, line) in enumerate(input_file):
passage_id, passage = line.rstrip().split("\t")
features = {"passage_id": passage_id,
"passage": passage}
yield idx, features
def generate_examples_qrels(filepath):
with open(filepath, encoding="utf-8") as input_file:
for (idx, line) in enumerate(input_file):
if idx > 0:
query_id, _, passage_id, score = line.rstrip().split(" ")
features = {"query_id": int(query_id),
"passage_id": passage_id,
"score": int(score)}
yield idx - 1, features
def generate_examples_topics(filepath):
with open(filepath, encoding="utf-8") as input_file:
for (idx, line) in enumerate(input_file):
query_id, query = line.rstrip().split("\t")
features = {"query_id": int(query_id),
"query": query}
yield idx, features
class Quati(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = (
[
datasets.BuilderConfig(
name="quati_10M_passages",
description="Portugues Brazilian passages, composing the complete Quati 10M dataset.",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="quati_1M_passages",
description="Portugues Brazilian passages, composing the Quati 1M dataset.",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="quati_10M_qrels",
description="Qrels for the annotated passages from the Quati 10M dataset.",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="quati_1M_qrels",
description="Qrels for the annotated passages from the Quati 1M dataset.",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="quati_test_topics",
description="50 test topics, corresponding to Quati dataset qrels.",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="quati_all_topics",
description="All 200 topics created for the Quati dataset, including the 50 ones corresponding to Quati dataset qrels.",
version=datasets.Version("1.0.0"),
)
]
+ [
datasets.BuilderConfig(
name="quati_10M_passages_{}".format(which_part),
description="Portugues Brazilian passages, composing the Quati 10M dataset {}.".format(which_part),
version=datasets.Version("1.0.0"),
)
for which_part in QUATI_10M_DATASET_PARTS
]
)
DEFAULT_CONFIG_NAME = "quati_1M_passages"
def _info(self):
name = self.config.name
if "passages" in name:
features = {
"passage_id": datasets.Value("string"),
"passage": datasets.Value("string"),
}
elif name.endswith("qrels"):
features = {
"query_id": datasets.Value("int32"),
"passage_id": datasets.Value("string"),
"score": datasets.Value("int32"),
}
else:
features = {
"query_id": datasets.Value("int32"),
"query": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=f"{_DESCRIPTION}\n{self.config.description}",
features=datasets.Features(features),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "quati_10M_passages":
urls = {which_part: _URLS["quati_10M_passages_{}".format(which_part)] for which_part in QUATI_10M_DATASET_PARTS}
dl_path = dl_manager.download_and_extract(urls)
return [datasets.SplitGenerator(name="quati_10M_passages_{}".format(which_part), gen_kwargs={"filepath": dl_path[which_part]}) for which_part in QUATI_10M_DATASET_PARTS]
else:
url = _URLS[self.config.name]
dl_path = dl_manager.download_and_extract(url)
return (datasets.SplitGenerator(name=self.config.name, gen_kwargs={"filepath": dl_path}),)
def _generate_examples(self, filepath, args=None):
"""Yields examples."""
if "passages" in self.config.name:
return generate_examples_passages(filepath)
if self.config.name.endswith("qrels"):
return generate_examples_qrels(filepath)
else:
return generate_examples_topics(filepath) |