|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Quati dataset.""" |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
place holder |
|
""" |
|
|
|
_URL = "https://github.com/unicamp-dl/quati" |
|
|
|
_DESCRIPTION = """ |
|
Quati ― Portuguese Native Information Retrieval dataset. |
|
""" |
|
|
|
|
|
|
|
QUATI_10M_DATASET_PARTS=["part_00", "part_01", "part_02", "part_03", "part_04"] |
|
|
|
|
|
|
|
_URLS = { |
|
"quati_1M_passages": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_1M.tsv", |
|
"quati_10M_passages_part_00": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_00.tsv", |
|
"quati_10M_passages_part_01": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_01.tsv", |
|
"quati_10M_passages_part_02": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_02.tsv", |
|
"quati_10M_passages_part_03": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_03.tsv", |
|
"quati_10M_passages_part_04": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/quati_10M_part_04.tsv", |
|
"quati_1M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_1M_qrels.txt", |
|
"quati_10M_qrels": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/qrels/quati_10M_qrels.txt", |
|
"quati_test_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_test_topics.tsv", |
|
"quati_all_topics": "https://huggingface.co/datasets/unicamp-dl/quati/resolve/main/topics/quati_all_topics.tsv" |
|
} |
|
|
|
|
|
|
|
def generate_examples_passages(filepath): |
|
|
|
with open(filepath, encoding="utf-8") as input_file: |
|
for (idx, line) in enumerate(input_file): |
|
|
|
passage_id, passage = line.rstrip().split("\t") |
|
|
|
features = {"passage_id": passage_id, |
|
"passage": passage} |
|
|
|
yield idx, features |
|
|
|
|
|
|
|
def generate_examples_qrels(filepath): |
|
|
|
with open(filepath, encoding="utf-8") as input_file: |
|
for (idx, line) in enumerate(input_file): |
|
query_id, _, passage_id, score = line.rstrip().split(" ") |
|
|
|
features = {"query_id": int(query_id), |
|
"passage_id": passage_id, |
|
"score": int(score)} |
|
|
|
yield idx, features |
|
|
|
|
|
def generate_examples_topics(filepath): |
|
|
|
with open(filepath, encoding="utf-8") as input_file: |
|
for (idx, line) in enumerate(input_file): |
|
if idx > 0: |
|
query_id, query = line.rstrip().split("\t") |
|
|
|
features = {"query_id": int(query_id), |
|
"query": query} |
|
|
|
yield idx - 1, features |
|
|
|
|
|
|
|
class Quati(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = ( |
|
[ |
|
datasets.BuilderConfig( |
|
name="quati_10M_passages", |
|
description="Portugues Brazilian passages, composing the complete Quati 10M dataset.", |
|
version=datasets.Version("1.0.0"), |
|
), |
|
|
|
datasets.BuilderConfig( |
|
name="quati_1M_passages", |
|
description="Portugues Brazilian passages, composing the Quati 1M dataset.", |
|
version=datasets.Version("1.0.0"), |
|
), |
|
|
|
datasets.BuilderConfig( |
|
name="quati_10M_qrels", |
|
description="Qrels for the annotated passages from the Quati 10M dataset.", |
|
version=datasets.Version("1.0.0"), |
|
), |
|
|
|
datasets.BuilderConfig( |
|
name="quati_1M_qrels", |
|
description="Qrels for the annotated passages from the Quati 1M dataset.", |
|
version=datasets.Version("1.0.0"), |
|
), |
|
|
|
datasets.BuilderConfig( |
|
name="quati_test_topics", |
|
description="50 test topics, corresponding to Quati dataset qrels.", |
|
version=datasets.Version("1.0.0"), |
|
), |
|
|
|
datasets.BuilderConfig( |
|
name="quati_all_topics", |
|
description="All 200 topics created for the Quati dataset, including the 50 ones corresponding to Quati dataset qrels.", |
|
version=datasets.Version("1.0.0"), |
|
) |
|
] |
|
+ [ |
|
datasets.BuilderConfig( |
|
name="quati_10M_passages_{}".format(which_part), |
|
description="Portugues Brazilian passages, composing the Quati 10M dataset {}.".format(which_part), |
|
version=datasets.Version("1.0.0"), |
|
) |
|
for which_part in QUATI_10M_DATASET_PARTS |
|
] |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "quati_1M_passages" |
|
|
|
|
|
def _info(self): |
|
name = self.config.name |
|
if "passages" in name: |
|
features = { |
|
"passage_id": datasets.Value("string"), |
|
"passage": datasets.Value("string"), |
|
} |
|
elif name.endswith("qrels"): |
|
features = { |
|
"query_id": datasets.Value("int32"), |
|
"passage_id": datasets.Value("string"), |
|
"score": datasets.Value("int32"), |
|
} |
|
else: |
|
features = { |
|
"query_id": datasets.Value("int32"), |
|
"query": datasets.Value("string"), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=f"{_DESCRIPTION}\n{self.config.description}", |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.config.name == "quati_10M_passages": |
|
|
|
urls = {which_part: _URLS["quati_10M_passages_{}".format(which_part)] for which_part in QUATI_10M_DATASET_PARTS} |
|
|
|
dl_path = dl_manager.download_and_extract(urls) |
|
|
|
return [datasets.SplitGenerator(name="quati_10M_passages_{}".format(which_part), gen_kwargs={"filepath": dl_path[which_part]}) for which_part in QUATI_10M_DATASET_PARTS] |
|
|
|
else: |
|
url = _URLS[self.config.name] |
|
dl_path = dl_manager.download_and_extract(url) |
|
|
|
return (datasets.SplitGenerator(name=self.config.name, gen_kwargs={"filepath": dl_path}),) |
|
|
|
|
|
def _generate_examples(self, filepath, args=None): |
|
"""Yields examples.""" |
|
|
|
if "passages" in self.config.name: |
|
return generate_examples_passages(filepath) |
|
|
|
if self.config.name.endswith("qrels"): |
|
return generate_examples_qrels(filepath) |
|
|
|
else: |
|
return generate_examples_topics(filepath) |