Datasets:
Tasks:
Text Classification
Sub-tasks:
topic-classification
Languages:
Romanian
Size:
10K<n<100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MOROCO: The Moldavian and Romanian Dialectal Corpus""" | |
import datasets | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{ Butnaru-ACL-2019, | |
author = {Andrei M. Butnaru and Radu Tudor Ionescu}, | |
title = "{MOROCO: The Moldavian and Romanian Dialectal Corpus}", | |
booktitle = {Proceedings of ACL}, | |
year = {2019}, | |
pages={688--698}, | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
The MOROCO (Moldavian and Romanian Dialectal Corpus) dataset contains 33564 samples of text collected from the news domain. | |
The samples belong to one of the following six topics: | |
- culture | |
- finance | |
- politics | |
- science | |
- sports | |
- tech | |
""" | |
_HOMEPAGE = "https://github.com/butnaruandrei/MOROCO" | |
_LICENSE = "CC BY-SA 4.0 License" | |
# The HuggingFace dataset library don't host the datasets but only point to the original files | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URL = "https://raw.githubusercontent.com/butnaruandrei/MOROCO/master/MOROCO/preprocessed/all/" | |
_TRAIN_SAMPLES_FILE = "train_samples.txt" | |
_TRAIN_LABELS_FILE = "train_category_labels.txt" | |
_VAL_SAMPLES_FILE = "validation_samples.txt" | |
_VAL_LABELS_FILE = "validation_category_labels.txt" | |
_TEST_SAMPLES_FILE = "test_samples.txt" | |
_TEST_LABELS_FILE = "test_category_labels.txt" | |
class MOROCOConfig(datasets.BuilderConfig): | |
"""BuilderConfig for the MOROCO dataset""" | |
def __init__(self, **kwargs): | |
super(MOROCOConfig, self).__init__(**kwargs) | |
class MOROCO(datasets.GeneratorBasedBuilder): | |
"""MOROCO dataset""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
MOROCOConfig(name="moroco", version=VERSION, description="MOROCO dataset"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"category": datasets.features.ClassLabel( | |
names=[ | |
"culture", | |
"finance", | |
"politics", | |
"science", | |
"sports", | |
"tech", | |
] | |
), | |
"sample": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train_samples": _URL + _TRAIN_SAMPLES_FILE, | |
"train_labels": _URL + _TRAIN_LABELS_FILE, | |
"val_samples": _URL + _VAL_SAMPLES_FILE, | |
"val_labels": _URL + _VAL_LABELS_FILE, | |
"test_samples": _URL + _TEST_SAMPLES_FILE, | |
"test_labels": _URL + _TEST_LABELS_FILE, | |
} | |
downloaded_files = dl_manager.download(urls_to_download) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"samples_filepath": downloaded_files["train_samples"], | |
"labels_filepath": downloaded_files["train_labels"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"samples_filepath": downloaded_files["test_samples"], | |
"labels_filepath": downloaded_files["test_labels"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"samples_filepath": downloaded_files["val_samples"], | |
"labels_filepath": downloaded_files["val_labels"], | |
}, | |
), | |
] | |
def _generate_examples(self, samples_filepath, labels_filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
with open(samples_filepath, "r", encoding="utf-8") as fsamples: | |
sample_rows = fsamples.read().splitlines() | |
with open(labels_filepath, "r", encoding="utf-8") as flabels: | |
label_rows = flabels.readlines() | |
for i, row in enumerate(sample_rows): | |
samp_id = row.split("\t")[0] | |
sample = "".join(row.split("\t")[1:]) | |
label = int(label_rows[i].split("\t")[1]) | |
yield i, { | |
"id": samp_id, | |
"category": label - 1, | |
"sample": sample, | |
} | |