Datasets:

Languages:
Romanian
ArXiv:
License:
moroco / moroco.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
f49ef35
raw
history blame
6.15 kB
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MOROCO: The Moldavian and Romanian Dialectal Corpus"""
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{ Butnaru-ACL-2019,
author = {Andrei M. Butnaru and Radu Tudor Ionescu},
title = "{MOROCO: The Moldavian and Romanian Dialectal Corpus}",
booktitle = {Proceedings of ACL},
year = {2019},
pages={688--698},
}
"""
# You can copy an official description
_DESCRIPTION = """\
The MOROCO (Moldavian and Romanian Dialectal Corpus) dataset contains 33564 samples of text collected from the news domain.
The samples belong to one of the following six topics:
- culture
- finance
- politics
- science
- sports
- tech
"""
_HOMEPAGE = "https://github.com/butnaruandrei/MOROCO"
_LICENSE = "CC BY-SA 4.0 License"
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://raw.githubusercontent.com/butnaruandrei/MOROCO/master/MOROCO/preprocessed/all/"
_TRAIN_SAMPLES_FILE = "train_samples.txt"
_TRAIN_LABELS_FILE = "train_category_labels.txt"
_VAL_SAMPLES_FILE = "validation_samples.txt"
_VAL_LABELS_FILE = "validation_category_labels.txt"
_TEST_SAMPLES_FILE = "test_samples.txt"
_TEST_LABELS_FILE = "test_category_labels.txt"
class MOROCOConfig(datasets.BuilderConfig):
"""BuilderConfig for the MOROCO dataset"""
def __init__(self, **kwargs):
super(MOROCOConfig, self).__init__(**kwargs)
class MOROCO(datasets.GeneratorBasedBuilder):
"""MOROCO dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
MOROCOConfig(name="moroco", version=VERSION, description="MOROCO dataset"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"category": datasets.features.ClassLabel(
names=[
"culture",
"finance",
"politics",
"science",
"sports",
"tech",
]
),
"sample": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train_samples": _URL + _TRAIN_SAMPLES_FILE,
"train_labels": _URL + _TRAIN_LABELS_FILE,
"val_samples": _URL + _VAL_SAMPLES_FILE,
"val_labels": _URL + _VAL_LABELS_FILE,
"test_samples": _URL + _TEST_SAMPLES_FILE,
"test_labels": _URL + _TEST_LABELS_FILE,
}
downloaded_files = dl_manager.download(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"samples_filepath": downloaded_files["train_samples"],
"labels_filepath": downloaded_files["train_labels"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"samples_filepath": downloaded_files["test_samples"],
"labels_filepath": downloaded_files["test_labels"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"samples_filepath": downloaded_files["val_samples"],
"labels_filepath": downloaded_files["val_labels"],
},
),
]
def _generate_examples(self, samples_filepath, labels_filepath):
"""This function returns the examples in the raw (text) form."""
with open(samples_filepath, "r", encoding="utf-8") as fsamples:
sample_rows = fsamples.read().splitlines()
with open(labels_filepath, "r", encoding="utf-8") as flabels:
label_rows = flabels.readlines()
for i, row in enumerate(sample_rows):
samp_id = row.split("\t")[0]
sample = "".join(row.split("\t")[1:])
label = int(label_rows[i].split("\t")[1])
yield i, {
"id": samp_id,
"category": label - 1,
"sample": sample,
}