|
import io |
|
import os |
|
import base64 |
|
import mimetypes |
|
|
|
import numpy as np |
|
import streamlit as st |
|
import pandas as pd |
|
import altair as alt |
|
import sklearn as skl |
|
import PIL as pil |
|
|
|
from uform import get_model |
|
from usearch.index import Index, MetricKind |
|
|
|
|
|
|
|
script_path: str = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
data_path: str = os.environ.get( |
|
'UNSPLASH_SEARCH_PATH', os.path.join(script_path, 'dataset')) |
|
|
|
view_local_images: bool = True if os.environ.get( |
|
'STREAMLIT_SERVER_ENABLE_STATIC_SERVING') else False |
|
|
|
|
|
image_query = bytes() |
|
text_query = str() |
|
results = list() |
|
max_caption_length: int = 100 |
|
|
|
|
|
class FileNotFoundError(Exception): |
|
pass |
|
|
|
|
|
def img_to_data(path): |
|
"""Convert a file (specified by a path) into a data URI.""" |
|
if not os.path.exists(path): |
|
raise FileNotFoundError |
|
mime, _ = mimetypes.guess_type(path) |
|
with open(path, 'rb') as fp: |
|
data = fp.read() |
|
data64 = base64.b64encode(data).decode('utf-8') |
|
return f'data:{mime}/jpg;base64,{data64}' |
|
|
|
|
|
@st.cache_resource |
|
def get_uform_model(): |
|
return get_model('unum-cloud/uform-vl-english') |
|
|
|
|
|
@st.cache_resource |
|
def get_unsplash_metadata(): |
|
path = os.path.join(data_path, 'images.csv') |
|
assert os.path.exists(path), 'Missing metadata file' |
|
df = pd.read_csv(path, dtype=str).fillna('') |
|
df['photo_submitted_at'] = pd.to_datetime( |
|
df['photo_submitted_at'], format='mixed') |
|
return df |
|
|
|
|
|
@st.cache_resource |
|
def get_unsplash_usearch_index(): |
|
index = Index(ndim=256, metric=MetricKind.Cos) |
|
path = os.path.join(data_path, 'images.usearch') |
|
assert os.path.exists(path), 'Missing index file' |
|
index.view(path) |
|
return index |
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
page_title='USearch through Unsplash', |
|
page_icon='🐍', layout='wide', |
|
initial_sidebar_state='collapsed', |
|
) |
|
|
|
st.title('USearch through Unsplash') |
|
|
|
|
|
text_query: str = st.text_input( |
|
'Search Bar', |
|
placeholder='Search for Unsplash photos', |
|
value='', key='text_query', |
|
label_visibility='collapsed') |
|
if not len(text_query): |
|
text_query = None |
|
|
|
image_query: io.BytesIO = st.file_uploader( |
|
'Alternatively, choose an image file') |
|
|
|
layout: str = st.radio( |
|
'Layout', |
|
('List', 'Grid', 'Semantics'), |
|
horizontal=True, |
|
label_visibility='collapsed') |
|
|
|
columns: int = st.sidebar.slider( |
|
'Grid Columns', min_value=1, max_value=10, value=5) |
|
show_captions: bool = st.sidebar.checkbox('Show Captions in Grid', value=True) |
|
max_results: int = st.sidebar.number_input( |
|
'Max Matches', min_value=1, max_value=None, value=100) |
|
|
|
model = get_uform_model() |
|
table = get_unsplash_metadata() |
|
index = get_unsplash_usearch_index() |
|
|
|
|
|
|
|
if not text_query and not image_query: |
|
results = table[:max_results] |
|
|
|
else: |
|
with st.spinner(f'We are searching through {len(table)} entries'): |
|
|
|
if image_query: |
|
image_query = pil.Image.open(image_query) |
|
query_data = model.preprocess_image(image_query) |
|
query_embedding = model.encode_image(query_data).detach().numpy() |
|
else: |
|
query_data = model.preprocess_text(text_query) |
|
query_embedding = model.encode_text(query_data).detach().numpy() |
|
|
|
|
|
|
|
|
|
matches, _, _ = index.search( |
|
query_embedding.flatten(), |
|
max_results, |
|
exact=True, |
|
) |
|
results = table.iloc[matches] |
|
|
|
st.success( |
|
f'Found {len(results)} matches among {len(table)} entries!', icon='✅') |
|
|
|
|
|
|
|
|
|
results = results.copy().reset_index() |
|
results['photo_image_base64'] = [ |
|
img_to_data(os.path.join(data_path, 'images', id + '.jpg')) |
|
for id in results['photo_id']] |
|
|
|
|
|
|
|
|
|
if layout == 'List': |
|
|
|
columns = [ |
|
'photo_image_base64', |
|
'photo_description', |
|
'ai_description', |
|
'photographer_username', |
|
'photo_submitted_at', |
|
'stats_views', |
|
'stats_downloads', |
|
'photo_id', |
|
'photo_url', |
|
'photo_image_url', |
|
] |
|
visible_results = results[columns] |
|
|
|
st.dataframe( |
|
visible_results, |
|
column_config={ |
|
'photo_id': st.column_config.TextColumn('ID'), |
|
'photo_url': st.column_config.LinkColumn('Page'), |
|
'photo_image_url': st.column_config.LinkColumn('Remote'), |
|
'photo_image_base64': st.column_config.ImageColumn( |
|
'Local', |
|
width='large'), |
|
'photo_submitted_at': st.column_config.DatetimeColumn( |
|
'Time', |
|
format='DD.MM.YYYY', |
|
), |
|
'photo_description': st.column_config.TextColumn('Human Text'), |
|
'ai_description': st.column_config.TextColumn('AI Text'), |
|
'photographer_username': st.column_config.TextColumn('Author'), |
|
'stats_views': st.column_config.NumberColumn('Views'), |
|
'stats_downloads': st.column_config.NumberColumn('Downloads'), |
|
}, |
|
use_container_width=True, |
|
hide_index=False, |
|
height=1000, |
|
) |
|
|
|
elif layout == 'Semantics': |
|
|
|
vectors = np.vstack([ |
|
index.reconstruct(id, dtype=np.float32) |
|
for id in results['photo_id']]) |
|
|
|
tsne = skl.manifold.TSNE( |
|
n_components=2, learning_rate='auto', |
|
init='random', perplexity=3).fit_transform(vectors) |
|
|
|
results['x'] = tsne[:, 0] |
|
results['y'] = tsne[:, 1] |
|
|
|
altair_chart = alt.Chart(results).mark_circle(size=200).encode( |
|
x='x', |
|
y='y', |
|
tooltip=['photo_image_base64'], |
|
) |
|
st.altair_chart(altair_chart, use_container_width=True, theme='streamlit') |
|
|
|
elif layout == 'Grid': |
|
|
|
for n_row, row in results.reset_index().iterrows(): |
|
i = n_row % columns |
|
if i == 0: |
|
st.write('---') |
|
cols = st.columns(columns, gap='large') |
|
|
|
with cols[n_row % columns]: |
|
id = row['photo_id'] |
|
username = row['photographer_username'].strip() |
|
preview_path = row['photo_image_base64'] |
|
|
|
if show_captions: |
|
description = row['photo_description'].strip() |
|
if len(description) > max_caption_length: |
|
description = description[:max_caption_length] + '...' |
|
description = f'{description} \@{username}' |
|
else: |
|
description = '' |
|
st.image( |
|
preview_path, |
|
caption=description, |
|
use_column_width='always') |
|
|