|
"""Wikipedia snippets in parquet format""" |
|
import math |
|
import pyarrow.parquet as pq |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
_CITATION = """\ |
|
@ONLINE {wikidump, |
|
author = {Wikimedia Foundation}, |
|
title = {Wikimedia Downloads}, |
|
url = {https://dumps.wikimedia.org} |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
The dataset was built from the Wikipedia dump (https://dumps.wikimedia.org/). |
|
Each example contains the content of one full Wikipedia article with cleaning to strip |
|
markdown and unwanted sections (references, etc.). |
|
""" |
|
_LICENSE = ( |
|
"This work is licensed under the Creative Commons Attribution-ShareAlike " |
|
"3.0 Unported License. To view a copy of this license, visit " |
|
"http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to " |
|
"Creative Commons, PO Box 1866, Mountain View, CA 94042, USA." |
|
) |
|
|
|
|
|
class WikipediaSnippetsStreamed(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"wiki_id": datasets.Value("string"), |
|
"start_paragraph": datasets.Value("int32"), |
|
"start_character": datasets.Value("int32"), |
|
"end_paragraph": datasets.Value("int32"), |
|
"end_character": datasets.Value("int32"), |
|
"article_title": datasets.Value("string"), |
|
"section_title": datasets.Value("string"), |
|
"passage_text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://dumps.wikimedia.org", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
url = "https://storage.googleapis.com/huggingface-nlp/cache/datasets/wiki40b/en/1.1.0/wiki40b-train.parquet" |
|
downloaded_file = dl_manager.download(url) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file}), |
|
] |
|
|
|
def wiki40b_article_snippets(self, article, passage_len=100, overlap=0): |
|
paragraphs = article["text"].split("\n") |
|
aticle_idx = paragraphs.index("_START_ARTICLE_") + 1 |
|
article_title = paragraphs[aticle_idx] if aticle_idx < len(paragraphs) else "" |
|
section_indices = [i + 1 for i, par in enumerate(paragraphs[:-1]) if par == "_START_SECTION_"] |
|
par_tabs = [par.split(" ") for par in paragraphs] |
|
word_map = [ |
|
(i, len(" ".join(par[:j])), w) |
|
for i, par in enumerate(par_tabs) |
|
if not par[0].startswith("_START_") |
|
for j, w in enumerate(par) |
|
if i > 0 |
|
] |
|
step_size = passage_len - overlap |
|
passages = [] |
|
for i in range(math.ceil(len(word_map) / step_size)): |
|
pre_toks = word_map[i * step_size: i * step_size + passage_len] |
|
start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]]) |
|
section_ids = [j for j in section_indices if j >= start_section_id and j <= pre_toks[-1][0]] |
|
section_ids = section_ids if len(section_ids) > 0 else [0] |
|
passage_text = " ".join([w for p_id, s_id, w in pre_toks]) |
|
passages += [ |
|
{ |
|
"article_title": article_title, |
|
"section_title": " & ".join([paragraphs[j] for j in section_ids]), |
|
"wiki_id": article["wikidata_id"], |
|
"start_paragraph": pre_toks[0][0], |
|
"start_character": pre_toks[0][1], |
|
"end_paragraph": pre_toks[-1][0], |
|
"end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1, |
|
"passage_text": passage_text.replace("_NEWLINE_", "\n"), |
|
} |
|
] |
|
return passages |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("generating examples from = %s", filepath) |
|
passage_counter = 0 |
|
with open(filepath, "rb") as f: |
|
pf = pq.ParquetFile(f) |
|
for i in range(pf.num_row_groups): |
|
batch_table_dict = pf.read_row_group(i).to_pydict() |
|
for idx, article_text in enumerate(batch_table_dict["text"]): |
|
article = {"text": article_text, "wikidata_id": batch_table_dict["wikidata_id"][idx]} |
|
passages = self.wiki40b_article_snippets(article) |
|
for passage in passages: |
|
yield ++passage_counter, passage |
|
|