# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # Modified by Vésteinn Snæbjarnarson 2021 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 LABELS = [ "EVN", "GRO", "LOC", "MNT", "O", "PRS", "SMP", "TME", "WRK" ] import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{swe-nerc, title = {Swe-NERC}, author = {Ahrenberg, Lars ; Frid, Johan and Olsson, Leif-Jöran}, url = {https://hdl.handle.net/10794/121}, year = {2020} } """ _DESCRIPTION = """\ The corpus consists of ca. 150.000 words of text. """ _URL = "https://huggingface.co/datasets/vesteinn/swe-nerc/raw/main/" _TRAINING_FILE = "swe_nerc_v1.tsv" class SweNERCConfig(datasets.BuilderConfig): """BuilderConfig for swe-nerc""" def __init__(self, **kwargs): """BuilderConfig for swe-nerc. Args: **kwargs: keyword arguments forwarded to super. """ super(SweNERCConfig, self).__init__(**kwargs) class SweNERC(datasets.GeneratorBasedBuilder): """sosialurin-faroese-ner dataset.""" BUILDER_CONFIGS = [ SweNERCConfig(name="swe-nerc", version=datasets.Version("1.0.0"), description="swedish ner corpus"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=LABELS ) ), } ), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # tokens are tab separated splits = line.split("\t") tokens.append(splits[0]) try: ner_tags.append(splits[1].rstrip()) except: print(splits) raise # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }