File size: 10,007 Bytes
cad6eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import ipdb
import pdb
import os
import numpy as np
import json
import re
from PIL import Image
from pathlib import Path
from datasets import load_dataset
import decord
from tqdm import tqdm
import logging
import hashlib


def load_viddiff_dataset(splits=["easy"], subset_mode="0"):
    """
    splits in ['ballsports', 'demo', 'easy', 'fitness', 'music', 'surgery']
    """
    dataset = load_dataset("viddiff/VidDiffBench", cache_dir=None)
    dataset = dataset['test']

    def _filter_splits(example):
        return example["split"] in splits

    dataset = dataset.filter(_filter_splits)

    def _map_elements_to_json(example):
        example["videos"] = json.loads(example["videos"])
        example["differences_annotated"] = json.loads(
            example["differences_annotated"])
        example["differences_gt"] = json.loads(example["differences_gt"])
        return example

    dataset = dataset.map(_map_elements_to_json)
    # dataset = dataset.map(_clean_annotations)
    dataset = apply_subset_mode(dataset, subset_mode)

    return dataset


def load_all_videos(dataset, cache=True, do_tqdm=True):
    """ 
    Return a 2-element tuple. Each element is a list of length len(datset). 
    First list is video A for each datapoint as a dict with elements 
        path: original path to video 
        fps: frames per second 
        video: numpy array of the video shape (nframes,H,W,3)
    Second list is the same but for video B. 
    """

    all_videos = ([], [])
    # make iterator, with or without tqdm based on `do_tqdm`
    if do_tqdm:
        it = tqdm(dataset)
    else:
        it = dataset

    # load each video
    for row in it:
        videos = get_video_data(row['videos'], cache=cache)

        all_videos[0].append(videos[0])
        all_videos[1].append(videos[1])

    return all_videos


def _clean_annotations(example):
    # Not all differences in the taxonomy may have a label available, so filter them.

    differences_gt_labeled = {
        k: v
        for k, v in example['differences_gt'].items() if v is not None
    }
    differences_annotated = {
        k: v
        for k, v in example['differences_annotated'].items()
        if k in differences_gt_labeled.keys()
    }

    # Directly assign to the example without deepcopy
    example['differences_gt'] = differences_gt_labeled
    example['differences_annotated'] = differences_annotated

    return example


def get_video_data(videos: dict, cache=True):
    """
    Pass in the videos dictionary from the dataset, like dataset[idx]['videos'].
    Load the 2 videos represented as numpy arrays. 
    By default, cache the arrays ... so the second time through, the dataset 
    loading will be faster. 

    returns: video0, video1
    """
    video_dicts = []

    for i in [0, 1]:
        path = videos[i]['path']
        assert Path(path).exists(
        ), f"Video not downloaded [{path}]\ncheck dataset README about downloading videos"
        frames_trim = slice(*videos[i]['frames_trim'])

        video_dict = videos[i].copy()

        if cache:
            dir_cache = Path("cache/cache_data")
            dir_cache.mkdir(exist_ok=True, parents=True)
            hash_key = get_hash_key(path + str(frames_trim))
            memmap_filename = dir_cache / f"memmap_{hash_key}.npy"

            if os.path.exists(memmap_filename):
                video_info = np.load(f"{memmap_filename}.info.npy",
                                     allow_pickle=True).item()
                video = np.memmap(memmap_filename,
                                  dtype=video_info['dtype'],
                                  mode='r',
                                  shape=video_info['shape'])
                video_dict['video'] = video
                video_dicts.append(video_dict)
                continue

        is_dir = Path(path).is_dir()
        if is_dir:
            video = _load_video_from_directory_of_images(
                path, frames_trim=frames_trim)

        else:
            assert Path(path).suffix in (".mp4", ".mov")
            video, fps = _load_video(path, frames_trim=frames_trim)
            assert fps == videos[i]['fps']

        if cache:
            np.save(f"{memmap_filename}.info.npy", {
                'shape': video.shape,
                'dtype': video.dtype
            })
            memmap = np.memmap(memmap_filename,
                               dtype=video.dtype,
                               mode='w+',
                               shape=video.shape)
            memmap[:] = video[:]
            memmap.flush()
            video = memmap

        video_dict['video'] = video
        video_dicts.append(video_dict)

    return video_dicts


def _load_video(f, return_fps=True, frames_trim: slice = None) -> np.ndarray:
    """ 
    mp4 video to frames numpy array shape (N,H,W,3).
    Do not use for long videos
    frames_trim: (s,e) is start and end int frames to include (warning, the range
    is inclusive, unlike in list indexing.)
    """
    vid = decord.VideoReader(str(f))
    fps = vid.get_avg_fps()

    if len(vid) > 50000:
        raise ValueError(
            "Video probably has too many frames to convert to a numpy")

    if frames_trim is None:
        frames_trim = slice(0, None, None)
    video_np = vid[frames_trim].asnumpy()

    if not return_fps:
        return video_np
    else:
        assert fps > 0
        return video_np, fps


def _load_video_from_directory_of_images(
    path_dir: str,
    frames_trim: slice = None,
    downsample_time: int = None,
) -> np.ndarray:
    """

    `path_dir` is a directory path with images that, when arranged in alphabetical
    order, make a video. 
    This function returns the a numpy array shape (N,H,W,3)  where N is the 
    number of frames. 
    """
    files = sorted(os.listdir(path_dir))

    if frames_trim is not None:
        files = files[frames_trim]

    if downsample_time is not None:
        files = files[::downsample_time]

    files = [f"{path_dir}/{f}" for f in files]
    images = [Image.open(f) for f in files]

    video_array = np.stack(images)

    return video_array


def _subsample_video(video: np.ndarray,
                     fps_original: int,
                     fps_target: int,
                     fps_warning: bool = True):
    """ 
    video: video as numby array (nframes, h, w, 3)
    fps_original: original fps of the video 
    fps_target: target fps to downscale to
    fps_warning: if True, then log warnings to logger if the target fps is 
        higher than original fps, or if the target fps isn't possible because 
        it isn't divisible by the original fps. 
    """
    subsample_time = fps_original / fps_target

    if subsample_time < 1 and fps_warning:
        logging.warning(f"Trying to subsample frames to fps {fps_target}, which "\
            "is higher than the fps of the original video which is "\
            "{video['fps']}. The video fps won't be changed for {video['path']}. "\
            f"\nSupress this warning by setting config fps_warning=False")
        return video, fps_original, 1

    subsample_time_int = int(subsample_time)
    fps_new = int(fps_original / subsample_time_int)
    if fps_new != fps_target and fps_warning:
        logging.warning(f"Config lmm.fps='{fps_target}' but the original fps is {fps_original} " \
            f"so we downscale to fps {fps_new} instead. " \
            f"\nSupress this warning by setting config fps_warning=False")

    video = video[::subsample_time_int]

    return video, fps_new, subsample_time_int


def apply_subset_mode(dataset, subset_mode):
    """ 
    For example if subset_mode is "3_per_action" then just get the first 3 rows
    for each unique action. 
    Useful for working with subsets. 
    """
    match = re.match(r"(\d+)_per_action", subset_mode)
    if match:
        instances_per_action = int(match.group(1))
        action_counts = {}
        subset_indices = []

        for idx, example in enumerate(dataset):
            action = example['action']
            if action not in action_counts:
                action_counts[action] = 0

            if action_counts[action] < instances_per_action:
                subset_indices.append(idx)
                action_counts[action] += 1

        return dataset.select(subset_indices)
    else:
        return dataset


def get_hash_key(key: str) -> str:
    return hashlib.sha256(key.encode()).hexdigest()


def get_n_differences(dataset, config_n_differences: int | str | Path):
    """
    The maximum number of differences the model is allowed to make. 
    Either it's a single int, or its a path to a json `ndiff`, where n_differences
    is indexed by the data split and sample action, e.g.: 
        ndiff['fitness']['fitness_4'] = 8
    For split 'fitness' and action 'fitness_4'

    Returns: a list with length len(dataset), with an int for each sample. 
    """
    if type(config_n_differences) is int:
        n_differences = [config_n_differences] * len(dataset)
    else:
        path = Path(config_n_differences)
        if not path.exists():
            raise ValueError(
                f"Config value n_differences: [{n_differences}] must be an int " \
                "or a path to a json with per-action level stuff n_differences ")
        with open(path, 'r') as fp:
            lookup_ndiff = json.load(fp)
        n_differences = []
        for row in dataset:
            split = row['split']
            action = row['action']
            if split not in lookup_ndiff.keys(
            ) or action not in lookup_ndiff[split].keys():
                raise ValueError(
                    f"n_differences json at {path} has no entry for {(action, split)}"
                )
            n_differences.append(lookup_ndiff[split][action])

    return n_differences


if __name__ == "__main__":
    # dataset = load_viddiff_dataset(splits=['surgery','ballsports'])
dataset = load_viddiff_dataset(splits=['demo'])
    videos = load_all_videos(dataset)