File size: 10,474 Bytes
cad6eb5 88ec624 cad6eb5 88ec624 cad6eb5 88ec624 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import ipdb
import pdb
import os
import numpy as np
import json
import re
from PIL import Image
from pathlib import Path
from datasets import load_dataset
import decord
from tqdm import tqdm
import logging
import hashlib
def load_viddiff_dataset(splits=["easy"], subset_mode="0"):
"""
splits in ['ballsports', 'demo', 'easy', 'fitness', 'music', 'surgery']
"""
dataset = load_dataset("viddiff/VidDiffBench", cache_dir=None)
dataset = dataset['test']
def _filter_splits(example):
return example["split"] in splits
dataset = dataset.filter(_filter_splits)
def _map_elements_to_json(example):
example["videos"] = json.loads(example["videos"])
example["differences_annotated"] = json.loads(
example["differences_annotated"])
example["differences_gt"] = json.loads(example["differences_gt"])
return example
dataset = dataset.map(_map_elements_to_json)
# dataset = dataset.map(_clean_annotations)
dataset = apply_subset_mode(dataset, subset_mode)
dataset = _get_difficulty_splits(dataset)
return dataset
def _get_difficulty_splits(dataset):
with open("data/lookup_action_to_split.json", "r") as fp:
lookup_action_to_split = json.load(fp)
def add_split_difficulty(example):
example['split_difficulty'] = lookup_action_to_split[example['action']]
return example
dataset = dataset.map(add_split_difficulty)
return dataset
def load_all_videos(dataset, cache=True, do_tqdm=True):
"""
Return a 2-element tuple. Each element is a list of length len(datset).
First list is video A for each datapoint as a dict with elements
path: original path to video
fps: frames per second
video: numpy array of the video shape (nframes,H,W,3)
Second list is the same but for video B.
"""
all_videos = ([], [])
# make iterator, with or without tqdm based on `do_tqdm`
if do_tqdm:
it = tqdm(dataset)
else:
it = dataset
# load each video
for row in it:
videos = get_video_data(row['videos'], cache=cache)
all_videos[0].append(videos[0])
all_videos[1].append(videos[1])
return all_videos
def _clean_annotations(example):
# Not all differences in the taxonomy may have a label available, so filter them.
differences_gt_labeled = {
k: v
for k, v in example['differences_gt'].items() if v is not None
}
differences_annotated = {
k: v
for k, v in example['differences_annotated'].items()
if k in differences_gt_labeled.keys()
}
# Directly assign to the example without deepcopy
example['differences_gt'] = differences_gt_labeled
example['differences_annotated'] = differences_annotated
return example
def get_video_data(videos: dict, cache=True):
"""
Pass in the videos dictionary from the dataset, like dataset[idx]['videos'].
Load the 2 videos represented as numpy arrays.
By default, cache the arrays ... so the second time through, the dataset
loading will be faster.
returns: video0, video1
"""
video_dicts = []
for i in [0, 1]:
path = videos[i]['path']
assert Path(path).exists(
), f"Video not downloaded [{path}]\ncheck dataset README about downloading videos"
frames_trim = slice(*videos[i]['frames_trim'])
video_dict = videos[i].copy()
if cache:
dir_cache = Path("cache/cache_data")
dir_cache.mkdir(exist_ok=True, parents=True)
hash_key = get_hash_key(path + str(frames_trim))
memmap_filename = dir_cache / f"memmap_{hash_key}.npy"
if os.path.exists(memmap_filename):
video_info = np.load(f"{memmap_filename}.info.npy",
allow_pickle=True).item()
video = np.memmap(memmap_filename,
dtype=video_info['dtype'],
mode='r',
shape=video_info['shape'])
video_dict['video'] = video
video_dicts.append(video_dict)
continue
is_dir = Path(path).is_dir()
if is_dir:
video = _load_video_from_directory_of_images(
path, frames_trim=frames_trim)
else:
assert Path(path).suffix in (".mp4", ".mov")
video, fps = _load_video(path, frames_trim=frames_trim)
assert fps == videos[i]['fps']
if cache:
np.save(f"{memmap_filename}.info.npy", {
'shape': video.shape,
'dtype': video.dtype
})
memmap = np.memmap(memmap_filename,
dtype=video.dtype,
mode='w+',
shape=video.shape)
memmap[:] = video[:]
memmap.flush()
video = memmap
video_dict['video'] = video
video_dicts.append(video_dict)
return video_dicts
def _load_video(f, return_fps=True, frames_trim: slice = None) -> np.ndarray:
"""
mp4 video to frames numpy array shape (N,H,W,3).
Do not use for long videos
frames_trim: (s,e) is start and end int frames to include (warning, the range
is inclusive, unlike in list indexing.)
"""
vid = decord.VideoReader(str(f))
fps = vid.get_avg_fps()
if len(vid) > 50000:
raise ValueError(
"Video probably has too many frames to convert to a numpy")
if frames_trim is None:
frames_trim = slice(0, None, None)
video_np = vid[frames_trim].asnumpy()
if not return_fps:
return video_np
else:
assert fps > 0
return video_np, fps
def _load_video_from_directory_of_images(
path_dir: str,
frames_trim: slice = None,
downsample_time: int = None,
) -> np.ndarray:
"""
`path_dir` is a directory path with images that, when arranged in alphabetical
order, make a video.
This function returns the a numpy array shape (N,H,W,3) where N is the
number of frames.
"""
files = sorted(os.listdir(path_dir))
if frames_trim is not None:
files = files[frames_trim]
if downsample_time is not None:
files = files[::downsample_time]
files = [f"{path_dir}/{f}" for f in files]
images = [Image.open(f) for f in files]
video_array = np.stack(images)
return video_array
def _subsample_video(video: np.ndarray,
fps_original: int,
fps_target: int,
fps_warning: bool = True):
"""
video: video as numby array (nframes, h, w, 3)
fps_original: original fps of the video
fps_target: target fps to downscale to
fps_warning: if True, then log warnings to logger if the target fps is
higher than original fps, or if the target fps isn't possible because
it isn't divisible by the original fps.
"""
subsample_time = fps_original / fps_target
if subsample_time < 1 and fps_warning:
logging.warning(f"Trying to subsample frames to fps {fps_target}, which "\
"is higher than the fps of the original video which is "\
"{video['fps']}. The video fps won't be changed for {video['path']}. "\
f"\nSupress this warning by setting config fps_warning=False")
return video, fps_original, 1
subsample_time_int = int(subsample_time)
fps_new = int(fps_original / subsample_time_int)
if fps_new != fps_target and fps_warning:
logging.warning(f"Config lmm.fps='{fps_target}' but the original fps is {fps_original} " \
f"so we downscale to fps {fps_new} instead. " \
f"\nSupress this warning by setting config fps_warning=False")
video = video[::subsample_time_int]
return video, fps_new, subsample_time_int
def apply_subset_mode(dataset, subset_mode):
"""
For example if subset_mode is "3_per_action" then just get the first 3 rows
for each unique action.
Useful for working with subsets.
"""
match = re.match(r"(\d+)_per_action", subset_mode)
if match:
instances_per_action = int(match.group(1))
action_counts = {}
subset_indices = []
for idx, example in enumerate(dataset):
action = example['action']
if action not in action_counts:
action_counts[action] = 0
if action_counts[action] < instances_per_action:
subset_indices.append(idx)
action_counts[action] += 1
return dataset.select(subset_indices)
else:
return dataset
def get_hash_key(key: str) -> str:
return hashlib.sha256(key.encode()).hexdigest()
def get_n_differences(dataset, config_n_differences: int | str | Path):
"""
The maximum number of differences the model is allowed to make.
Either it's a single int, or its a path to a json `ndiff`, where n_differences
is indexed by the data split and sample action, e.g.:
ndiff['fitness']['fitness_4'] = 8
For split 'fitness' and action 'fitness_4'
Returns: a list with length len(dataset), with an int for each sample.
"""
if type(config_n_differences) is int:
n_differences = [config_n_differences] * len(dataset)
else:
path = Path(config_n_differences)
if not path.exists():
raise ValueError(
f"Config value n_differences: [{n_differences}] must be an int " \
"or a path to a json with per-action level stuff n_differences ")
with open(path, 'r') as fp:
lookup_ndiff = json.load(fp)
n_differences = []
for row in dataset:
split = row['split']
action = row['action']
if split not in lookup_ndiff.keys(
) or action not in lookup_ndiff[split].keys():
raise ValueError(
f"n_differences json at {path} has no entry for {(action, split)}"
)
n_differences.append(lookup_ndiff[split][action])
return n_differences
if __name__ == "__main__":
# these are the 3 data loading commands
dataset = load_viddiff_dataset(splits=['ballsports'])
videos = load_all_videos(dataset)
n_differences = lvd.get_n_differences(dataset, "data/n_differences.json")
|