import ipdb import pdb import os import numpy as np import json import re from PIL import Image from pathlib import Path from datasets import load_dataset import decord from tqdm import tqdm import logging import hashlib def load_viddiff_dataset(splits=["easy"], subset_mode="0"): """ splits in ['ballsports', 'demo', 'easy', 'fitness', 'music', 'surgery'] """ dataset = load_dataset("viddiff/VidDiffBench", cache_dir=None) dataset = dataset['test'] def _filter_splits(example): return example["split"] in splits dataset = dataset.filter(_filter_splits) def _map_elements_to_json(example): example["videos"] = json.loads(example["videos"]) example["differences_annotated"] = json.loads( example["differences_annotated"]) example["differences_gt"] = json.loads(example["differences_gt"]) return example dataset = dataset.map(_map_elements_to_json) # dataset = dataset.map(_clean_annotations) dataset = apply_subset_mode(dataset, subset_mode) return dataset def load_all_videos(dataset, cache=True, do_tqdm=True): """ Return a 2-element tuple. Each element is a list of length len(datset). First list is video A for each datapoint as a dict with elements path: original path to video fps: frames per second video: numpy array of the video shape (nframes,H,W,3) Second list is the same but for video B. """ all_videos = ([], []) # make iterator, with or without tqdm based on `do_tqdm` if do_tqdm: it = tqdm(dataset) else: it = dataset # load each video for row in it: videos = get_video_data(row['videos'], cache=cache) all_videos[0].append(videos[0]) all_videos[1].append(videos[1]) return all_videos def _clean_annotations(example): # Not all differences in the taxonomy may have a label available, so filter them. differences_gt_labeled = { k: v for k, v in example['differences_gt'].items() if v is not None } differences_annotated = { k: v for k, v in example['differences_annotated'].items() if k in differences_gt_labeled.keys() } # Directly assign to the example without deepcopy example['differences_gt'] = differences_gt_labeled example['differences_annotated'] = differences_annotated return example def get_video_data(videos: dict, cache=True): """ Pass in the videos dictionary from the dataset, like dataset[idx]['videos']. Load the 2 videos represented as numpy arrays. By default, cache the arrays ... so the second time through, the dataset loading will be faster. returns: video0, video1 """ video_dicts = [] for i in [0, 1]: path = videos[i]['path'] assert Path(path).exists( ), f"Video not downloaded [{path}]\ncheck dataset README about downloading videos" frames_trim = slice(*videos[i]['frames_trim']) video_dict = videos[i].copy() if cache: dir_cache = Path("cache/cache_data") dir_cache.mkdir(exist_ok=True, parents=True) hash_key = get_hash_key(path + str(frames_trim)) memmap_filename = dir_cache / f"memmap_{hash_key}.npy" if os.path.exists(memmap_filename): video_info = np.load(f"{memmap_filename}.info.npy", allow_pickle=True).item() video = np.memmap(memmap_filename, dtype=video_info['dtype'], mode='r', shape=video_info['shape']) video_dict['video'] = video video_dicts.append(video_dict) continue is_dir = Path(path).is_dir() if is_dir: video = _load_video_from_directory_of_images( path, frames_trim=frames_trim) else: assert Path(path).suffix in (".mp4", ".mov") video, fps = _load_video(path, frames_trim=frames_trim) assert fps == videos[i]['fps'] if cache: np.save(f"{memmap_filename}.info.npy", { 'shape': video.shape, 'dtype': video.dtype }) memmap = np.memmap(memmap_filename, dtype=video.dtype, mode='w+', shape=video.shape) memmap[:] = video[:] memmap.flush() video = memmap video_dict['video'] = video video_dicts.append(video_dict) return video_dicts def _load_video(f, return_fps=True, frames_trim: slice = None) -> np.ndarray: """ mp4 video to frames numpy array shape (N,H,W,3). Do not use for long videos frames_trim: (s,e) is start and end int frames to include (warning, the range is inclusive, unlike in list indexing.) """ vid = decord.VideoReader(str(f)) fps = vid.get_avg_fps() if len(vid) > 50000: raise ValueError( "Video probably has too many frames to convert to a numpy") if frames_trim is None: frames_trim = slice(0, None, None) video_np = vid[frames_trim].asnumpy() if not return_fps: return video_np else: assert fps > 0 return video_np, fps def _load_video_from_directory_of_images( path_dir: str, frames_trim: slice = None, downsample_time: int = None, ) -> np.ndarray: """ `path_dir` is a directory path with images that, when arranged in alphabetical order, make a video. This function returns the a numpy array shape (N,H,W,3) where N is the number of frames. """ files = sorted(os.listdir(path_dir)) if frames_trim is not None: files = files[frames_trim] if downsample_time is not None: files = files[::downsample_time] files = [f"{path_dir}/{f}" for f in files] images = [Image.open(f) for f in files] video_array = np.stack(images) return video_array def _subsample_video(video: np.ndarray, fps_original: int, fps_target: int, fps_warning: bool = True): """ video: video as numby array (nframes, h, w, 3) fps_original: original fps of the video fps_target: target fps to downscale to fps_warning: if True, then log warnings to logger if the target fps is higher than original fps, or if the target fps isn't possible because it isn't divisible by the original fps. """ subsample_time = fps_original / fps_target if subsample_time < 1 and fps_warning: logging.warning(f"Trying to subsample frames to fps {fps_target}, which "\ "is higher than the fps of the original video which is "\ "{video['fps']}. The video fps won't be changed for {video['path']}. "\ f"\nSupress this warning by setting config fps_warning=False") return video, fps_original, 1 subsample_time_int = int(subsample_time) fps_new = int(fps_original / subsample_time_int) if fps_new != fps_target and fps_warning: logging.warning(f"Config lmm.fps='{fps_target}' but the original fps is {fps_original} " \ f"so we downscale to fps {fps_new} instead. " \ f"\nSupress this warning by setting config fps_warning=False") video = video[::subsample_time_int] return video, fps_new, subsample_time_int def apply_subset_mode(dataset, subset_mode): """ For example if subset_mode is "3_per_action" then just get the first 3 rows for each unique action. Useful for working with subsets. """ match = re.match(r"(\d+)_per_action", subset_mode) if match: instances_per_action = int(match.group(1)) action_counts = {} subset_indices = [] for idx, example in enumerate(dataset): action = example['action'] if action not in action_counts: action_counts[action] = 0 if action_counts[action] < instances_per_action: subset_indices.append(idx) action_counts[action] += 1 return dataset.select(subset_indices) else: return dataset def get_hash_key(key: str) -> str: return hashlib.sha256(key.encode()).hexdigest() def get_n_differences(dataset, config_n_differences: int | str | Path): """ The maximum number of differences the model is allowed to make. Either it's a single int, or its a path to a json `ndiff`, where n_differences is indexed by the data split and sample action, e.g.: ndiff['fitness']['fitness_4'] = 8 For split 'fitness' and action 'fitness_4' Returns: a list with length len(dataset), with an int for each sample. """ if type(config_n_differences) is int: n_differences = [config_n_differences] * len(dataset) else: path = Path(config_n_differences) if not path.exists(): raise ValueError( f"Config value n_differences: [{n_differences}] must be an int " \ "or a path to a json with per-action level stuff n_differences ") with open(path, 'r') as fp: lookup_ndiff = json.load(fp) n_differences = [] for row in dataset: split = row['split'] action = row['action'] if split not in lookup_ndiff.keys( ) or action not in lookup_ndiff[split].keys(): raise ValueError( f"n_differences json at {path} has no entry for {(action, split)}" ) n_differences.append(lookup_ndiff[split][action]) return n_differences if __name__ == "__main__": # dataset = load_viddiff_dataset(splits=['surgery','ballsports']) dataset = load_viddiff_dataset(splits=['demo']) videos = load_all_videos(dataset)