--- license: mit --- This repository contains the multi-modal multi-party conversation dataset described in the paper **Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding**. ## Related Resources - Paper: [Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding](https://arxiv.org/abs/2412.17295) - Conversation Speaker Identification Model: [CSI model](https://huggingface.co/datasets/wangyueqian/friends_mmc) ## Friends-MMC dataset The structure of this repository is as follows: ``` datasets/ ├── 5_turns/ │ ├── images/ │ ├── train-metadata.json │ ├── test-metadata.json │ ├── test-noisy-metadata.json ├── 8_turns/ │ ├── images/ │ ├── train-metadata.json │ ├── test-metadata.json │ ├── test-noisy-metadata.json ├── face_track_videos/ │ ├── s01e01/ // season name and episode name │ │ ├── 001196-001272 // each folder contains the cropped face tracks for each turn. The numbers in folder name is start and end frame number. │ │ │ ├── 0.avi 0.wav 1.avi 1.wav │ │ ├── 001272-001375 │ │ ├── ... │ ├── s01e02/ │ ├── s01e03/ │ ├── ... ├── face_track_annotations/ │ ├── train/ │ │ ├── s01e01.pkl // each pickle file stores metadata (frame number and bounding box in the original video for each frame) of the cropped face track video │ │ ├── s01e02.pkl │ │ ├── ... │ ├── test/ // same format as files in `train` folder, but for season 03 (test set) │ │ ├── s03e01.pkl │ │ ├── s03e02.pkl │ │ ├── ... │ ├── test-noisy/ // some face tracks removed from the files in `test` folder │ │ ├── s03e01.pkl │ │ ├── s03e02.pkl │ │ ├── ... ├── raw_videos/ // contains raw video of the TV Series ├── ubuntu_dialogue_corpus/ // The Ubuntu Dialogue Corpus [1] which is used for training the text module of the CSI model ├── README.md ``` [1] Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., & Yan, R. (2019). GSN: A Graph-Structured Network for Multi-Party Dialogues. International Joint Conference on Artificial Intelligence. ## Download the dataset The `face_track_videos/`, `face_track_annotations/`, `ubuntu_dialogue_corpus`, `5_turns/images/` and `8_turns/images/` folders are stored in zip files. Unzip them after downloading: ```shell unzip -q face_track_annotations.zip unzip -q face_track_videos.zip unzip -q ubuntu_dialogue_corpus.zip cd 5_turns unzip -q images.zip cd ../8_turns unzip -q images.zip cd .. ``` The `raw_videos/` folder is also stored in a zip file. However, as the raw videos are not used in the experiments, you can optionally download and unzip: ```shell cat raw_videos.zip* > raw_videos.zip unzip -q raw_videos.zip ``` ## Data Format ### Metadata Dialogue annotations are stored in `train-metadata.json`, `test-metadata.json` and `test-noisy-metadata.json`. Take an example from `5_turns/train-metadata.json`, each example is formatted as follows: ```json [ { "frame": "s01e01-001259", "video": "s01e01-001196-001272", "speaker": "monica", "content": "There's nothing to tell! He's just some guy I work with!", "faces": [[[763, 254, 807, 309], "carol"], [[582, 265, 620, 314], "monica"]] }, { "frame": "s01e01-001323", "video": "s01e01-001272-001375", "speaker": "joey", "content": "C'mon, you're going out with the guy! There's gotta be something wrong with him!", "faces": [[[569, 175, 715, 371], "joey"]] }, {...}, {...}, {...} // three more above-like dicts ] ``` - "frame" corresponds to the filename of the single frame of this turn sampled from the video (`5_turns/images/s01e01-001259.jpg`), - "content" is the textual content of this turn, - "faces" is a list of face bounding boxes (x1, y1, x2, y2) and their corresponding speaker names in the image `5_turns/images/s01e01-001259.jpg`, - "video" corresponds to the filname of folder of face tracks (`s01e01/001196-001272`) in the`face_track_videos/` folder, - "speaker" is the ground truth speaker annotation. ### Face tracks The face tracks that appears in the video corresponding to each turn are stored in a folder in the `face_track_videos/` folder. The folder name is the start and end frame number of the track. For example, `s01e01/001196-001272` contains the face tracks for the turn from frame 196 to frame 272 in episode `s01e01`. Each face track is stored in two files: `.avi` and `.wav`. The `.avi` file is the cropped face track video, and the `.wav` file is the corresponding audio of the frames. ### Face track annotations The face track annotation for each episode is a python dictionary. Take an example from `face_track_annotations/s01e01.pkl`, each turn is formatted as follows: ```json "s01e01-001196-001272": [ {"face_track_id": 0, "name": "carol", "frame": [1251, 1252, ...], "bbox": [[762.22, 257.18, 805.59, 309.45], [762.29, 256.34, 806.16, 309.51], ...]}, // face track 1 {"face_track_id": 1, "name": "monica", "frame": [frame 1, frame 2, ...], "bbox": [bbox 1, bbox 2, ...]}, // face track 2 ] ``` Each python dictionary in this example marks the track of a face. - "face_track_id" corresponds to the face track file name in `face_track_videos`. In this example, the face track for "carol" is `face_track_videos/s01e01/001196-001272/0.avi(.wav)`. - "frame" is a list of frame numbers in the turn. Each frame number >= start frame number and <= end frame number, - "bbox" is a list of bounding boxes (x1, y1, x2, y2). Each bounding box marks a face in its corresponding frame (e.g., the box [762.22, 257.18, 805.59, 309.45] of frame 1251 marks an appearence of a carol's face). ## Citation If you use this work in your research, please cite: ```bibtex @misc{wang2024friendsmmcdatasetmultimodalmultiparty, title={Friends-MMC: A Dataset for Multi-modal Multi-party Conversation Understanding}, author={Yueqian Wang and Xiaojun Meng and Yuxuan Wang and Jianxin Liang and Qun Liu and Dongyan Zhao}, year={2024}, eprint={2412.17295}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.17295}, } ```