Add more instructions
Browse files
README.md
CHANGED
@@ -70,13 +70,52 @@ from datasets import load_dataset
|
|
70 |
dataset = load_dataset("weaviate/wiki-sample", "aws-titan-embed-text-v2", split="train", streaming=True)
|
71 |
```
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
### Cohere
|
74 |
|
75 |
-
**
|
76 |
|
77 |
```python
|
78 |
from datasets import load_dataset
|
79 |
-
dataset = load_dataset("weaviate/wiki-sample", "cohere-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
```
|
81 |
|
82 |
### OpenAI
|
@@ -88,6 +127,25 @@ from datasets import load_dataset
|
|
88 |
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-small", split="train", streaming=True)
|
89 |
```
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
**text-embedding-3-large** - 3072d vectors - generated with OpenAI
|
92 |
|
93 |
```python
|
@@ -95,6 +153,25 @@ from datasets import load_dataset
|
|
95 |
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-large", split="train", streaming=True)
|
96 |
```
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
### Snowflake
|
99 |
|
100 |
**snowflake-arctic-embed** - 1024d vectors - generated with Ollama
|
@@ -103,3 +180,23 @@ dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-large",
|
|
103 |
from datasets import load_dataset
|
104 |
dataset = load_dataset("weaviate/wiki-sample", "snowflake-arctic-embed", split="train", streaming=True)
|
105 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
dataset = load_dataset("weaviate/wiki-sample", "aws-titan-embed-text-v2", split="train", streaming=True)
|
71 |
```
|
72 |
|
73 |
+
#### Weaviate collection configuration:
|
74 |
+
|
75 |
+
```python
|
76 |
+
from weaviate.classes.config import Configure
|
77 |
+
|
78 |
+
client.collections.create(
|
79 |
+
name="Wiki",
|
80 |
+
|
81 |
+
vectorizer_config=[
|
82 |
+
Configure.NamedVectors.text2vec_aws(
|
83 |
+
name="main_vector",
|
84 |
+
model="amazon.titan-embed-text-v2:0",
|
85 |
+
region="us-east-1", # make sure to use the correct region for you
|
86 |
+
|
87 |
+
source_properties=['title', 'text'], # which properties should be used to generate a vector
|
88 |
+
)
|
89 |
+
],
|
90 |
+
)
|
91 |
+
```
|
92 |
+
|
93 |
### Cohere
|
94 |
|
95 |
+
**embed-multilingual-v3** - 768d vectors - generated with Ollama
|
96 |
|
97 |
```python
|
98 |
from datasets import load_dataset
|
99 |
+
dataset = load_dataset("weaviate/wiki-sample", "cohere-embed-multilingual-v3", split="train", streaming=True)
|
100 |
+
```
|
101 |
+
|
102 |
+
#### Weaviate collection configuration:
|
103 |
+
|
104 |
+
```python
|
105 |
+
from weaviate.classes.config import Configure
|
106 |
+
|
107 |
+
client.collections.create(
|
108 |
+
name="Wiki",
|
109 |
+
|
110 |
+
vectorizer_config=[
|
111 |
+
Configure.NamedVectors.text2vec_cohere(
|
112 |
+
name="main_vector",
|
113 |
+
model="embed-multilingual-v3.0",
|
114 |
+
|
115 |
+
source_properties=['title', 'text'], # which properties should be used to generate a vector
|
116 |
+
)
|
117 |
+
],
|
118 |
+
)
|
119 |
```
|
120 |
|
121 |
### OpenAI
|
|
|
127 |
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-small", split="train", streaming=True)
|
128 |
```
|
129 |
|
130 |
+
#### Weaviate collection configuration:
|
131 |
+
|
132 |
+
```python
|
133 |
+
from weaviate.classes.config import Configure
|
134 |
+
|
135 |
+
client.collections.create(
|
136 |
+
name="Wiki",
|
137 |
+
|
138 |
+
vectorizer_config=[
|
139 |
+
Configure.NamedVectors.text2vec_openai(
|
140 |
+
name="main_vector",
|
141 |
+
model="text-embedding-3-small",
|
142 |
+
|
143 |
+
source_properties=['title', 'text'], # which properties should be used to generate a vector
|
144 |
+
)
|
145 |
+
],
|
146 |
+
)
|
147 |
+
```
|
148 |
+
|
149 |
**text-embedding-3-large** - 3072d vectors - generated with OpenAI
|
150 |
|
151 |
```python
|
|
|
153 |
dataset = load_dataset("weaviate/wiki-sample", "openai-text-embedding-3-large", split="train", streaming=True)
|
154 |
```
|
155 |
|
156 |
+
#### Weaviate collection configuration:
|
157 |
+
|
158 |
+
```python
|
159 |
+
from weaviate.classes.config import Configure
|
160 |
+
|
161 |
+
client.collections.create(
|
162 |
+
name="Wiki",
|
163 |
+
|
164 |
+
vectorizer_config=[
|
165 |
+
Configure.NamedVectors.text2vec_openai(
|
166 |
+
name="main_vector",
|
167 |
+
model="text-embedding-3-large",
|
168 |
+
|
169 |
+
source_properties=['title', 'text'], # which properties should be used to generate a vector
|
170 |
+
)
|
171 |
+
],
|
172 |
+
)
|
173 |
+
```
|
174 |
+
|
175 |
### Snowflake
|
176 |
|
177 |
**snowflake-arctic-embed** - 1024d vectors - generated with Ollama
|
|
|
180 |
from datasets import load_dataset
|
181 |
dataset = load_dataset("weaviate/wiki-sample", "snowflake-arctic-embed", split="train", streaming=True)
|
182 |
```
|
183 |
+
|
184 |
+
#### Weaviate collection configuration:
|
185 |
+
|
186 |
+
```python
|
187 |
+
from weaviate.classes.config import Configure
|
188 |
+
|
189 |
+
client.collections.create(
|
190 |
+
name="Wiki",
|
191 |
+
|
192 |
+
vectorizer_config=[
|
193 |
+
Configure.NamedVectors.text2vec_ollama(
|
194 |
+
name="main_vector",
|
195 |
+
model="snowflake-arctic-embed",
|
196 |
+
api_endpoint="http://host.docker.internal:11434", # If using Docker
|
197 |
+
|
198 |
+
source_properties=["title", "text"],
|
199 |
+
),
|
200 |
+
],
|
201 |
+
)
|
202 |
+
```
|