Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
File size: 6,691 Bytes
ab90b5b 349586e ab90b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TabFact: A Large-scale Dataset for Table-based Fact Verification"""
import json
import os
import datasets
_CITATION = """\
@inproceedings{2019TabFactA,
title={TabFact : A Large-scale Dataset for Table-based Fact Verification},
author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang},
booktitle = {International Conference on Learning Representations (ICLR)},
address = {Addis Ababa, Ethiopia},
month = {April},
year = {2020}
}
"""
_DESCRIPTION = """\
The problem of verifying whether a textual hypothesis holds the truth based on the given evidence, \
also known as fact verification, plays an important role in the study of natural language \
understanding and semantic representation. However, existing studies are restricted to \
dealing with unstructured textual evidence (e.g., sentences and passages, a pool of passages), \
while verification using structured forms of evidence, such as tables, graphs, and databases, remains unexplored. \
TABFACT is large scale dataset with 16k Wikipedia tables as evidence for 118k human annotated statements \
designed for fact verification with semi-structured evidence. \
The statements are labeled as either ENTAILED or REFUTED. \
TABFACT is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning.
"""
_HOMEPAGE = "https://tabfact.github.io/"
_GIT_ARCHIVE_URL = (
"https://github.com/wenhuchen/Table-Fact-Checking/archive/948b5560e2f7f8c9139bd91c7f093346a2bb56a8.zip"
)
class TabFact(datasets.GeneratorBasedBuilder):
"""TabFact: A Large-scale Dataset for Table-based Fact Verification"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="tab_fact",
version=datasets.Version("1.0.0"),
),
datasets.BuilderConfig(
name="blind_test",
version=datasets.Version("1.0.0"),
description="Blind test dataset",
),
]
def _info(self):
features = {
"id": datasets.Value("int32"),
"table_id": datasets.Value("string"),
"table_text": datasets.Value("string"),
"table_caption": datasets.Value("string"),
"statement": datasets.Value("string"),
}
if self.config.name == "tab_fact":
features["label"] = datasets.ClassLabel(names=["refuted", "entailed"])
else:
features["test_id"] = datasets.Value("string")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
extracted_path = dl_manager.download_and_extract(_GIT_ARCHIVE_URL)
repo_path = os.path.join(extracted_path, "Table-Fact-Checking-948b5560e2f7f8c9139bd91c7f093346a2bb56a8")
all_csv_path = os.path.join(repo_path, "data", "all_csv")
if self.config.name == "blind_test":
test_file_path = os.path.join(repo_path, "challenge", "blind_test.json")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"statements_file": test_file_path, "all_csv_path": all_csv_path},
),
]
train_statements_file = os.path.join(repo_path, "tokenized_data", "train_examples.json")
val_statements_file = os.path.join(repo_path, "tokenized_data", "val_examples.json")
test_statements_file = os.path.join(repo_path, "tokenized_data", "test_examples.json")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"statements_file": train_statements_file, "all_csv_path": all_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"statements_file": val_statements_file, "all_csv_path": all_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"statements_file": test_statements_file, "all_csv_path": all_csv_path},
),
]
def _generate_examples(self, statements_file, all_csv_path):
with open(statements_file, encoding="utf-8") as f:
examples = json.load(f)
if self.config.name == "blind_test":
test_examples = self._generate_blind_test_examples(examples, all_csv_path)
for idx, example in test_examples:
yield idx, example
else:
for i, (table_id, example) in enumerate(examples.items()):
table_file_path = os.path.join(all_csv_path, table_id)
with open(table_file_path, encoding="utf-8") as f:
tabel_text = f.read()
statements, labels, caption = example
for statement_idx, (statement, label) in enumerate(zip(statements, labels)):
yield f"{i}_{statement_idx}", {
"id": i,
"table_id": table_id,
"table_text": tabel_text,
"table_caption": caption,
"statement": statement,
"label": label,
}
def _generate_blind_test_examples(self, examples, all_csv_path):
for i, (test_id, example) in enumerate(examples.items()):
statement, table_id, caption = example
table_file_path = os.path.join(all_csv_path, table_id)
with open(table_file_path, encoding="utf-8") as f:
tabel_text = f.read()
yield i, {
"id": i,
"test_id": test_id,
"table_id": table_id,
"table_text": tabel_text,
"table_caption": caption,
"statement": statement,
}
|