File size: 5,237 Bytes
ab90b5b
 
 
 
 
893a58a
ab90b5b
893a58a
b8219a4
ab90b5b
 
 
 
 
 
 
 
 
 
349586e
2a56d9a
45c5957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00281d7
 
45c5957
 
 
 
 
 
 
1d7db0e
 
 
45c5957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab90b5b
 
2a3ddf8
ab90b5b
 
 
 
349586e
ab90b5b
 
 
349586e
 
ab90b5b
 
 
 
 
 
 
 
 
 
 
 
 
469c1f8
ab90b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469c1f8
 
 
45c5957
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- fact-checking
paperswithcode_id: tabfact
pretty_name: TabFact
dataset_info:
- config_name: tab_fact
  features:
  - name: id
    dtype: int32
  - name: table_id
    dtype: string
  - name: table_text
    dtype: string
  - name: table_caption
    dtype: string
  - name: statement
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': refuted
          '1': entailed
  splits:
  - name: train
    num_bytes: 99852664
    num_examples: 92283
  - name: validation
    num_bytes: 13846872
    num_examples: 12792
  - name: test
    num_bytes: 13493391
    num_examples: 12779
  download_size: 196508436
  dataset_size: 127192927
- config_name: blind_test
  features:
  - name: id
    dtype: int32
  - name: table_id
    dtype: string
  - name: table_text
    dtype: string
  - name: table_caption
    dtype: string
  - name: statement
    dtype: string
  - name: test_id
    dtype: string
  splits:
  - name: test
    num_bytes: 10954442
    num_examples: 9750
  download_size: 196508436
  dataset_size: 10954442
---

# Dataset Card for TabFact

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [TabFact](https://tabfact.github.io/index.html)
- **Repository:** [GitHub](https://github.com/wenhuchen/Table-Fact-Checking)
- **Paper:** [TabFact: A Large-scale Dataset for Table-based Fact Verification](https://arxiv.org/abs/1909.02164)
- **Leaderboard:** [Leaderboard](https://competitions.codalab.org/competitions/21611)
- **Point of Contact:** [Wenhu Chen](wenhuchen@cs.ucsb.edu)

### Dataset Summary

The problem of verifying whether a textual hypothesis holds the truth based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are restricted to dealing with unstructured textual evidence (e.g., sentences and passages, a pool of passages), while verification using structured forms of evidence, such as tables, graphs, and databases, remains unexplored. TABFACT is large scale dataset with 16k Wikipedia tables as evidence for 118k human annotated statements designed for fact verification with semi-structured evidence. The statements are labeled as either ENTAILED or REFUTED. TABFACT is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]
## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

[More Information Needed]

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

[More Information Needed]

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{2019TabFactA,
  title={TabFact : A Large-scale Dataset for Table-based Fact Verification},
  author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang},
  booktitle = {International Conference on Learning Representations (ICLR)},
  address = {Addis Ababa, Ethiopia},
  month = {April},
  year = {2020}
}
```

### Contributions

Thanks to [@patil-suraj](https://github.com/patil-suraj) for adding this dataset.