Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""TabFact: A Large-scale Dataset for Table-based Fact Verification""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{2019TabFactA, | |
title={TabFact : A Large-scale Dataset for Table-based Fact Verification}, | |
author={Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou and William Yang Wang}, | |
booktitle = {International Conference on Learning Representations (ICLR)}, | |
address = {Addis Ababa, Ethiopia}, | |
month = {April}, | |
year = {2020} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The problem of verifying whether a textual hypothesis holds the truth based on the given evidence, \ | |
also known as fact verification, plays an important role in the study of natural language \ | |
understanding and semantic representation. However, existing studies are restricted to \ | |
dealing with unstructured textual evidence (e.g., sentences and passages, a pool of passages), \ | |
while verification using structured forms of evidence, such as tables, graphs, and databases, remains unexplored. \ | |
TABFACT is large scale dataset with 16k Wikipedia tables as evidence for 118k human annotated statements \ | |
designed for fact verification with semi-structured evidence. \ | |
The statements are labeled as either ENTAILED or REFUTED. \ | |
TABFACT is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. | |
""" | |
_HOMEPAGE = "https://tabfact.github.io/" | |
_GIT_ARCHIVE_URL = ( | |
"https://github.com/wenhuchen/Table-Fact-Checking/archive/948b5560e2f7f8c9139bd91c7f093346a2bb56a8.zip" | |
) | |
class TabFact(datasets.GeneratorBasedBuilder): | |
"""TabFact: A Large-scale Dataset for Table-based Fact Verification""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="tab_fact", | |
version=datasets.Version("1.0.0"), | |
), | |
datasets.BuilderConfig( | |
name="blind_test", | |
version=datasets.Version("1.0.0"), | |
description="Blind test dataset", | |
), | |
] | |
def _info(self): | |
features = { | |
"id": datasets.Value("int32"), | |
"table_id": datasets.Value("string"), | |
"table_text": datasets.Value("string"), | |
"table_caption": datasets.Value("string"), | |
"statement": datasets.Value("string"), | |
} | |
if self.config.name == "tab_fact": | |
features["label"] = datasets.ClassLabel(names=["refuted", "entailed"]) | |
else: | |
features["test_id"] = datasets.Value("string") | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features(features), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
extracted_path = dl_manager.download_and_extract(_GIT_ARCHIVE_URL) | |
repo_path = os.path.join(extracted_path, "Table-Fact-Checking-948b5560e2f7f8c9139bd91c7f093346a2bb56a8") | |
all_csv_path = os.path.join(repo_path, "data", "all_csv") | |
if self.config.name == "blind_test": | |
test_file_path = os.path.join(repo_path, "challenge", "blind_test.json") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"statements_file": test_file_path, "all_csv_path": all_csv_path}, | |
), | |
] | |
train_statements_file = os.path.join(repo_path, "tokenized_data", "train_examples.json") | |
val_statements_file = os.path.join(repo_path, "tokenized_data", "val_examples.json") | |
test_statements_file = os.path.join(repo_path, "tokenized_data", "test_examples.json") | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"statements_file": train_statements_file, "all_csv_path": all_csv_path}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"statements_file": val_statements_file, "all_csv_path": all_csv_path}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"statements_file": test_statements_file, "all_csv_path": all_csv_path}, | |
), | |
] | |
def _generate_examples(self, statements_file, all_csv_path): | |
with open(statements_file, encoding="utf-8") as f: | |
examples = json.load(f) | |
if self.config.name == "blind_test": | |
test_examples = self._generate_blind_test_examples(examples, all_csv_path) | |
for idx, example in test_examples: | |
yield idx, example | |
else: | |
for i, (table_id, example) in enumerate(examples.items()): | |
table_file_path = os.path.join(all_csv_path, table_id) | |
with open(table_file_path, encoding="utf-8") as f: | |
tabel_text = f.read() | |
statements, labels, caption = example | |
for statement_idx, (statement, label) in enumerate(zip(statements, labels)): | |
yield f"{i}_{statement_idx}", { | |
"id": i, | |
"table_id": table_id, | |
"table_text": tabel_text, | |
"table_caption": caption, | |
"statement": statement, | |
"label": label, | |
} | |
def _generate_blind_test_examples(self, examples, all_csv_path): | |
for i, (test_id, example) in enumerate(examples.items()): | |
statement, table_id, caption = example | |
table_file_path = os.path.join(all_csv_path, table_id) | |
with open(table_file_path, encoding="utf-8") as f: | |
tabel_text = f.read() | |
yield i, { | |
"id": i, | |
"test_id": test_id, | |
"table_id": table_id, | |
"table_text": tabel_text, | |
"table_caption": caption, | |
"statement": statement, | |
} | |