whyen-wang
commited on
Commit
•
2f23893
1
Parent(s):
ccc4a63
update
Browse files- .gitignore +3 -0
- README.md +209 -0
- coco_keypoints.py +124 -0
- data/instance_train.zip +3 -0
- data/keypoints_train.zip +3 -0
- data/keypoints_validation.zip +3 -0
- prepare.ipynb +129 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
annotations/
|
2 |
+
annotations_trainval2017.zip
|
3 |
+
*.jsonl
|
README.md
CHANGED
@@ -1,3 +1,212 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
size_categories:
|
4 |
+
- n<1K
|
5 |
+
task_categories:
|
6 |
+
- object-detection
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
pretty_name: COCO Keypoints
|
10 |
---
|
11 |
+
|
12 |
+
# Dataset Card for "COCO Keypoints"
|
13 |
+
|
14 |
+
## Quick Start
|
15 |
+
### Usage
|
16 |
+
```python
|
17 |
+
>>> from datasets.load import load_dataset
|
18 |
+
|
19 |
+
>>> dataset = load_dataset('whyen-wang/coco_keypoints')
|
20 |
+
>>> example = dataset['train'][0]
|
21 |
+
>>> print(example)
|
22 |
+
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x360>,
|
23 |
+
'bboxes': [
|
24 |
+
[339.8800048828125, 22.15999984741211,
|
25 |
+
153.8800048828125, 300.7300109863281],
|
26 |
+
[471.6400146484375, 172.82000732421875,
|
27 |
+
35.91999816894531, 48.099998474121094]],
|
28 |
+
'keypoints': [[
|
29 |
+
[368, 61, 1], [369, 52, 2], [0, 0, 0], [382, 48, 2], [0, 0, 0],
|
30 |
+
[368, 84, 2], [435, 81, 2], [362, 125, 2], [446, 125, 2], [360, 153, 2],
|
31 |
+
[0, 0, 0], [397, 167, 1], [439, 166, 1], [369, 193, 2], [461, 234, 2],
|
32 |
+
[361, 246, 2], [474, 287, 2]
|
33 |
+
], [[...]]
|
34 |
+
]}
|
35 |
+
```
|
36 |
+
|
37 |
+
### Visualization
|
38 |
+
```python
|
39 |
+
>>> import cv2
|
40 |
+
>>> import numpy as np
|
41 |
+
>>> from PIL import Image
|
42 |
+
|
43 |
+
>>> def visualize(example):
|
44 |
+
image = np.array(example['image'])
|
45 |
+
bboxes = np.array(example['bboxes']).round().astype(int)
|
46 |
+
bboxes[:, 2:] += bboxes[:, :2]
|
47 |
+
keypoints = example['keypoints']
|
48 |
+
n = len(bboxes)
|
49 |
+
for i in range(n):
|
50 |
+
color = (255, 0, 0)
|
51 |
+
cv2.rectangle(image, bboxes[i, :2], bboxes[i, 2:], color, 2)
|
52 |
+
ks = keypoints[i]
|
53 |
+
for k in ks:
|
54 |
+
if k[-1] == 2:
|
55 |
+
cv2.circle(
|
56 |
+
image, k[:2], 5, (0, 255, 0), 1
|
57 |
+
)
|
58 |
+
return image
|
59 |
+
|
60 |
+
>>> Image.fromarray(visualize(example))
|
61 |
+
```
|
62 |
+
|
63 |
+
## Table of Contents
|
64 |
+
- [Table of Contents](#table-of-contents)
|
65 |
+
- [Dataset Description](#dataset-description)
|
66 |
+
- [Dataset Summary](#dataset-summary)
|
67 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
68 |
+
- [Languages](#languages)
|
69 |
+
- [Dataset Structure](#dataset-structure)
|
70 |
+
- [Data Instances](#data-instances)
|
71 |
+
- [Data Fields](#data-fields)
|
72 |
+
- [Data Splits](#data-splits)
|
73 |
+
- [Dataset Creation](#dataset-creation)
|
74 |
+
- [Curation Rationale](#curation-rationale)
|
75 |
+
- [Source Data](#source-data)
|
76 |
+
- [Annotations](#annotations)
|
77 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
78 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
79 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
80 |
+
- [Discussion of Biases](#discussion-of-biases)
|
81 |
+
- [Other Known Limitations](#other-known-limitations)
|
82 |
+
- [Additional Information](#additional-information)
|
83 |
+
- [Dataset Curators](#dataset-curators)
|
84 |
+
- [Licensing Information](#licensing-information)
|
85 |
+
- [Citation Information](#citation-information)
|
86 |
+
- [Contributions](#contributions)
|
87 |
+
|
88 |
+
## Dataset Description
|
89 |
+
|
90 |
+
- **Homepage:** https://cocodataset.org/
|
91 |
+
- **Repository:** None
|
92 |
+
- **Paper:** [Microsoft COCO: Common Objects in Context](https://arxiv.org/abs/1405.0312)
|
93 |
+
- **Leaderboard:** [Papers with Code](https://paperswithcode.com/dataset/coco)
|
94 |
+
- **Point of Contact:** None
|
95 |
+
|
96 |
+
### Dataset Summary
|
97 |
+
|
98 |
+
COCO is a large-scale object detection, segmentation, and captioning dataset.
|
99 |
+
|
100 |
+
### Supported Tasks and Leaderboards
|
101 |
+
|
102 |
+
[Object Detection](https://huggingface.co/tasks/object-detection)
|
103 |
+
[Image Segmentation](https://huggingface.co/tasks/image-segmentation)
|
104 |
+
|
105 |
+
### Languages
|
106 |
+
|
107 |
+
en
|
108 |
+
|
109 |
+
## Dataset Structure
|
110 |
+
|
111 |
+
### Data Instances
|
112 |
+
|
113 |
+
An example looks as follows.
|
114 |
+
|
115 |
+
```
|
116 |
+
{
|
117 |
+
"image": PIL.Image(mode="RGB"),
|
118 |
+
"captions": [
|
119 |
+
"Closeup of bins of food that include broccoli and bread.",
|
120 |
+
"A meal is presented in brightly colored plastic trays.",
|
121 |
+
"there are containers filled with different kinds of foods",
|
122 |
+
"Colorful dishes holding meat, vegetables, fruit, and bread.",
|
123 |
+
"A bunch of trays that have different food."
|
124 |
+
]
|
125 |
+
}
|
126 |
+
```
|
127 |
+
|
128 |
+
### Data Fields
|
129 |
+
|
130 |
+
[More Information Needed]
|
131 |
+
|
132 |
+
### Data Splits
|
133 |
+
|
134 |
+
| name | train | validation |
|
135 |
+
| ------- | -----: | ---------: |
|
136 |
+
| default | 64,115 | 2,693 |
|
137 |
+
|
138 |
+
## Dataset Creation
|
139 |
+
|
140 |
+
### Curation Rationale
|
141 |
+
|
142 |
+
[More Information Needed]
|
143 |
+
|
144 |
+
### Source Data
|
145 |
+
|
146 |
+
#### Initial Data Collection and Normalization
|
147 |
+
|
148 |
+
[More Information Needed]
|
149 |
+
|
150 |
+
#### Who are the source language producers?
|
151 |
+
|
152 |
+
[More Information Needed]
|
153 |
+
|
154 |
+
### Annotations
|
155 |
+
|
156 |
+
#### Annotation process
|
157 |
+
|
158 |
+
[More Information Needed]
|
159 |
+
|
160 |
+
#### Who are the annotators?
|
161 |
+
|
162 |
+
[More Information Needed]
|
163 |
+
|
164 |
+
### Personal and Sensitive Information
|
165 |
+
|
166 |
+
[More Information Needed]
|
167 |
+
|
168 |
+
## Considerations for Using the Data
|
169 |
+
|
170 |
+
### Social Impact of Dataset
|
171 |
+
|
172 |
+
[More Information Needed]
|
173 |
+
|
174 |
+
### Discussion of Biases
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
### Other Known Limitations
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Additional Information
|
183 |
+
|
184 |
+
### Dataset Curators
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
### Licensing Information
|
189 |
+
|
190 |
+
Creative Commons Attribution 4.0 License
|
191 |
+
|
192 |
+
### Citation Information
|
193 |
+
|
194 |
+
```
|
195 |
+
@article{cocodataset,
|
196 |
+
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
|
197 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
198 |
+
journal = {CoRR},
|
199 |
+
volume = {abs/1405.0312},
|
200 |
+
year = {2014},
|
201 |
+
url = {http://arxiv.org/abs/1405.0312},
|
202 |
+
archivePrefix = {arXiv},
|
203 |
+
eprint = {1405.0312},
|
204 |
+
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
205 |
+
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
206 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
207 |
+
}
|
208 |
+
```
|
209 |
+
|
210 |
+
### Contributions
|
211 |
+
|
212 |
+
Thanks to [@github-whyen-wang](https://github.com/whyen-wang) for adding this dataset.
|
coco_keypoints.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
_HOMEPAGE = 'https://cocodataset.org/'
|
6 |
+
_LICENSE = 'Creative Commons Attribution 4.0 License'
|
7 |
+
_DESCRIPTION = 'COCO is a large-scale object detection, segmentation, and captioning dataset.'
|
8 |
+
_CITATION = '''\
|
9 |
+
@article{cocodataset,
|
10 |
+
author = {Tsung{-}Yi Lin and Michael Maire and Serge J. Belongie and Lubomir D. Bourdev and Ross B. Girshick and James Hays and Pietro Perona and Deva Ramanan and Piotr Doll{'{a} }r and C. Lawrence Zitnick},
|
11 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
12 |
+
journal = {CoRR},
|
13 |
+
volume = {abs/1405.0312},
|
14 |
+
year = {2014},
|
15 |
+
url = {http://arxiv.org/abs/1405.0312},
|
16 |
+
archivePrefix = {arXiv},
|
17 |
+
eprint = {1405.0312},
|
18 |
+
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
19 |
+
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
20 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
21 |
+
}
|
22 |
+
'''
|
23 |
+
|
24 |
+
|
25 |
+
class COCOKeypointsConfig(datasets.BuilderConfig):
|
26 |
+
'''Builder Config for coco2017'''
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self, description, homepage,
|
30 |
+
annotation_urls, **kwargs
|
31 |
+
):
|
32 |
+
super(COCOKeypointsConfig, self).__init__(
|
33 |
+
version=datasets.Version('1.0.0', ''),
|
34 |
+
**kwargs
|
35 |
+
)
|
36 |
+
self.description = description
|
37 |
+
self.homepage = homepage
|
38 |
+
url = 'http://images.cocodataset.org/zips/'
|
39 |
+
self.train_image_url = url + 'train2017.zip'
|
40 |
+
self.val_image_url = url + 'val2017.zip'
|
41 |
+
self.train_annotation_urls = annotation_urls['train']
|
42 |
+
self.val_annotation_urls = annotation_urls['validation']
|
43 |
+
|
44 |
+
|
45 |
+
class COCOKeypoints(datasets.GeneratorBasedBuilder):
|
46 |
+
BUILDER_CONFIGS = [
|
47 |
+
COCOKeypointsConfig(
|
48 |
+
description=_DESCRIPTION,
|
49 |
+
homepage=_HOMEPAGE,
|
50 |
+
annotation_urls={
|
51 |
+
'train': 'data/keypoints_train.zip',
|
52 |
+
'validation': 'data/keypoints_validation.zip'
|
53 |
+
},
|
54 |
+
)
|
55 |
+
]
|
56 |
+
|
57 |
+
def _info(self):
|
58 |
+
features = datasets.Features({
|
59 |
+
'image': datasets.Image(mode='RGB', decode=True, id=None),
|
60 |
+
'bboxes': datasets.Sequence(
|
61 |
+
feature=datasets.Sequence(
|
62 |
+
feature=datasets.Value(dtype='float32', id=None),
|
63 |
+
length=4, id=None
|
64 |
+
), length=-1, id=None
|
65 |
+
),
|
66 |
+
'keypoints': datasets.Sequence(
|
67 |
+
feature=datasets.Sequence(
|
68 |
+
feature=datasets.Sequence(
|
69 |
+
feature=datasets.Value(dtype='int32', id=None),
|
70 |
+
), length=17, id=None
|
71 |
+
), length=-1, id=None
|
72 |
+
)
|
73 |
+
})
|
74 |
+
return datasets.DatasetInfo(
|
75 |
+
description=_DESCRIPTION,
|
76 |
+
features=features,
|
77 |
+
homepage=_HOMEPAGE,
|
78 |
+
license=_LICENSE,
|
79 |
+
citation=_CITATION
|
80 |
+
)
|
81 |
+
|
82 |
+
def _split_generators(self, dl_manager):
|
83 |
+
train_image_path = dl_manager.download_and_extract(
|
84 |
+
self.config.train_image_url
|
85 |
+
)
|
86 |
+
validation_image_path = dl_manager.download_and_extract(
|
87 |
+
self.config.val_image_url
|
88 |
+
)
|
89 |
+
train_annotation_paths = dl_manager.download_and_extract(
|
90 |
+
self.config.train_annotation_urls
|
91 |
+
)
|
92 |
+
val_annotation_paths = dl_manager.download_and_extract(
|
93 |
+
self.config.val_annotation_urls
|
94 |
+
)
|
95 |
+
return [
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name=datasets.Split.TRAIN,
|
98 |
+
gen_kwargs={
|
99 |
+
'image_path': f'{train_image_path}/train2017',
|
100 |
+
'annotation_path': f'{train_annotation_paths}/keypoints_train.jsonl'
|
101 |
+
}
|
102 |
+
),
|
103 |
+
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.VALIDATION,
|
105 |
+
gen_kwargs={
|
106 |
+
'image_path': f'{validation_image_path}/val2017',
|
107 |
+
'annotation_path': f'{val_annotation_paths}/keypoints_validation.jsonl'
|
108 |
+
}
|
109 |
+
)
|
110 |
+
]
|
111 |
+
|
112 |
+
def _generate_examples(self, image_path, annotation_path):
|
113 |
+
idx = 0
|
114 |
+
image_path = Path(image_path)
|
115 |
+
with open(annotation_path, 'r', encoding='utf-8') as f:
|
116 |
+
for line in f:
|
117 |
+
obj = json.loads(line.strip())
|
118 |
+
example = {
|
119 |
+
'image': str(image_path / obj['image']),
|
120 |
+
'bboxes': obj['bboxes'],
|
121 |
+
'keypoints': obj['keypoints']
|
122 |
+
}
|
123 |
+
yield idx, example
|
124 |
+
idx += 1
|
data/instance_train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8739c76e681f900923b900c9df0ef75cf421d39cabb54650c4b9ad19b6a76d85
|
3 |
+
size 22
|
data/keypoints_train.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e59c242ea0b1006f9a15c8781a0da691988ec9df08d8ab16244c4d19b1948601
|
3 |
+
size 12303366
|
data/keypoints_validation.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7929246036309bc9163a44dbcb802049764adfac181b18cb692b9d189260c954
|
3 |
+
size 515838
|
prepare.ipynb
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import zipfile\n",
|
12 |
+
"import requests\n",
|
13 |
+
"import jsonlines\n",
|
14 |
+
"from tqdm import tqdm\n",
|
15 |
+
"from pathlib import Path\n",
|
16 |
+
"from pycocotools.coco import COCO"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"# Download Annotations"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"url = 'http://images.cocodataset.org/annotations/'\n",
|
33 |
+
"files = [\n",
|
34 |
+
" 'annotations_trainval2017.zip'\n",
|
35 |
+
"]\n",
|
36 |
+
"for file in files:\n",
|
37 |
+
" if not Path(f'./{file}').exists():\n",
|
38 |
+
" response = requests.get(url + file)\n",
|
39 |
+
" with open(file, 'wb') as f:\n",
|
40 |
+
" f.write(response.content)\n",
|
41 |
+
"\n",
|
42 |
+
" with zipfile.ZipFile(file, 'r') as zipf:\n",
|
43 |
+
" zipf.extractall(Path())\n"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "markdown",
|
48 |
+
"metadata": {},
|
49 |
+
"source": [
|
50 |
+
"## Keypoint Detection Task"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"train_data = COCO('annotations/person_keypoints_train2017.json')\n",
|
60 |
+
"val_data = COCO('annotations/person_keypoints_val2017.json')"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"for split, data in zip(['train', 'validation'], [train_data, val_data]):\n",
|
70 |
+
" with jsonlines.open(f'data/keypoints_{split}.jsonl', mode='w') as writer:\n",
|
71 |
+
" for image_id, image_info in tqdm(data.imgs.items()):\n",
|
72 |
+
" bboxes, keypoints = [], []\n",
|
73 |
+
" anns = data.imgToAnns[image_id]\n",
|
74 |
+
" if len(anns) > 0:\n",
|
75 |
+
" \n",
|
76 |
+
" for ann in anns:\n",
|
77 |
+
" bboxes.append(ann['bbox'])\n",
|
78 |
+
" keypoints.append(ann['keypoints'])\n",
|
79 |
+
" writer.write({\n",
|
80 |
+
" 'image': image_info['file_name'],\n",
|
81 |
+
" 'bboxes': bboxes,\n",
|
82 |
+
" 'keypoints': np.array(keypoints).reshape(\n",
|
83 |
+
" len(bboxes), -1, 3\n",
|
84 |
+
" ).tolist()\n",
|
85 |
+
" })"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"for split in ['train', 'validation']:\n",
|
95 |
+
" file_path = f'data/keypoints_{split}.jsonl'\n",
|
96 |
+
" with zipfile.ZipFile(f'data/keypoints_{split}.zip', 'w', zipfile.ZIP_DEFLATED) as zipf:\n",
|
97 |
+
" zipf.write(file_path, os.path.basename(file_path))"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": []
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"kernelspec": {
|
110 |
+
"display_name": ".venv",
|
111 |
+
"language": "python",
|
112 |
+
"name": "python3"
|
113 |
+
},
|
114 |
+
"language_info": {
|
115 |
+
"codemirror_mode": {
|
116 |
+
"name": "ipython",
|
117 |
+
"version": 3
|
118 |
+
},
|
119 |
+
"file_extension": ".py",
|
120 |
+
"mimetype": "text/x-python",
|
121 |
+
"name": "python",
|
122 |
+
"nbconvert_exporter": "python",
|
123 |
+
"pygments_lexer": "ipython3",
|
124 |
+
"version": "3.12.2"
|
125 |
+
}
|
126 |
+
},
|
127 |
+
"nbformat": 4,
|
128 |
+
"nbformat_minor": 2
|
129 |
+
}
|