--- license: mit language: - en tags: - nlp - ml - dataset - fake-news - classification pretty_name: x_g85_fn_dataset configs: - config_name: processed data_files: - split: train path: fn_train.csv - split: test path: fn_test.csv - split: valid path: fn_valid.csv dataset_info: features: - name: text dtype: string - name: label dtype: int32 --- # X_G85 Fake News Dataset It is a preprocessed dataset that is used to build X_G85 ML Models. The collection of fake news that are collect from the following datasets ## How to stream dataset & use as pandas dataframe By streaming the dataset, it won't download on your host computer. Read more here [hugging face streaming dataset](https://huggingface.co/docs/datasets/stream). ```py import pandas as pd from datasets import load_dataset ``` > Note: The following operation may take some time depending on the size of the dataset. ```py dataset = load_dataset("x-g85/x_g85_fn_dataset", streaming=True) train = pd.DataFrame(dataset["train"]) valid = pd.DataFrame(dataset["valid"]) test = pd.DataFrame(dataset["test"]) ``` ```py X_train = train["text"] y_train = train["label"] X_valid = valid["text"] y_vaild = valid["label"] X_test = test["text"] y_test = test["label"] ``` ## Credit We have used the following datasets to create our own datasets and train models. - [Kaggle: Fake news detection dataset english](https://www.kaggle.com/datasets/sadikaljarif/fake-news-detection-dataset-english) - [Kaggle: Liar Preprocessed](https://www.kaggle.com/datasets/khandalaryan/liar-preprocessed-dataset) - [Kaggle: Stocknews](https://www.kaggle.com/datasets/aaron7sun/stocknews)