|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""No Language Left Behind (NLLB) |
|
|
|
The "No Language Left Behind" paper is a dataset with translation examples across 200 languages. |
|
This paper reuses prior work, and for some language pairs is just reusing CC-Matrix published on statmt.org. |
|
Depending on the language pair chosen, this script will fetch either the original |
|
version from statmt.org, or the new one from AllenAI. |
|
""" |
|
|
|
import datasets |
|
import typing as tp |
|
|
|
NLLB_CITATION = ( |
|
"@article{team2022NoLL," |
|
"title={No Language Left Behind: Scaling Human-Centered Machine Translation}," |
|
r"author={Nllb team and Marta Ruiz Costa-juss{\`a} and James Cross and Onur Celebi and Maha Elbayad and Kenneth Heafield and Kevin Heffernan and Elahe Kalbassi and Janice Lam and Daniel Licht and Jean Maillard and Anna Sun and Skyler Wang and Guillaume Wenzek and Alison Youngblood and Bapi Akula and Lo{\"i}c Barrault and Gabriel Mejia Gonzalez and Prangthip Hansanti and John Hoffman and Semarley Jarrett and Kaushik Ram Sadagopan and Dirk Rowe and Shannon L. Spruit and C. Tran and Pierre Andrews and Necip Fazil Ayan and Shruti Bhosale and Sergey Edunov and Angela Fan and Cynthia Gao and Vedanuj Goswami and Francisco Guzm'an and Philipp Koehn and Alexandre Mourachko and Christophe Ropers and Safiyyah Saleem and Holger Schwenk and Jeff Wang}," |
|
"journal={ArXiv}," |
|
"year={2022}," |
|
"volume={abs/2207.04672}" |
|
"}" |
|
) |
|
|
|
CCMATRIX_CITATION = ( |
|
"@inproceedings{schwenk2021ccmatrix," |
|
"title={CCMatrix: Mining Billions of High-Quality Parallel Sentences on the Web}," |
|
"author={Schwenk, Holger and Wenzek, Guillaume and Edunov, Sergey and Grave, {'E}douard and Joulin, Armand and Fan, Angela}," |
|
"booktitle={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}," |
|
"pages={6490--6500}," |
|
"year={2021}" |
|
) |
|
|
|
|
|
_DESCRIPTION = "" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "https://opendatacommons.org/licenses/by/1-0/" |
|
|
|
from .nllb_lang_pairs import NLLB_PAIRS, CCMATRIX_PAIRS, CCMATRIX_MAPPING |
|
|
|
_ALLENAI_URL = "https://storage.googleapis.com/allennlp-data-bucket/nllb/" |
|
_STATMT_URL = "http://data.statmt.org/cc-matrix/" |
|
|
|
|
|
class NLLBTaskConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for No Language Left Behind Dataset.""" |
|
|
|
def __init__(self, src_lg, tgt_lg, url, **kwargs): |
|
super(NLLBTaskConfig, self).__init__(**kwargs) |
|
self.src_lg = src_lg |
|
self.tgt_lg = tgt_lg |
|
self.url = url |
|
self.source = "statmt" if url.startswith(_STATMT_URL) else "allenai" |
|
|
|
def _builder_configs() -> tp.List[NLLBTaskConfig]: |
|
""" |
|
Creates the dataset used for training NLLB model. |
|
|
|
Note we always return data from AllenAI if possible because CC-Matrix data |
|
is older, and most language pairs have been improved between the two versions. |
|
""" |
|
configs = {} |
|
|
|
for (src_lg, tgt_lg) in NLLB_PAIRS: |
|
assert (src_lg, tgt_lg) not in configs |
|
configs[(src_lg, tgt_lg)] = NLLBTaskConfig( |
|
name=f"{src_lg}-{tgt_lg}", |
|
version=datasets.Version("1.0.0"), |
|
description=f"No Language Left Behind (NLLB): {src_lg} - {tgt_lg}", |
|
src_lg=src_lg, |
|
tgt_lg=tgt_lg, |
|
url=f"{_ALLENAI_URL}{src_lg}-{tgt_lg}.gz", |
|
) |
|
|
|
for (src_lg, tgt_lg) in CCMATRIX_PAIRS: |
|
|
|
|
|
|
|
|
|
assert (src_lg, tgt_lg) not in configs |
|
assert (tgt_lg, src_lg) not in configs |
|
src_cc, tgt_cc = CCMATRIX_MAPPING[src_lg], CCMATRIX_MAPPING[tgt_lg] |
|
configs[(src_lg, tgt_lg)] = NLLBTaskConfig( |
|
name=f"{src_lg}-{tgt_lg}", |
|
version=datasets.Version("1.0.0"), |
|
description=f"No Language Left Behind (NLLB): {src_lg} - {tgt_lg}", |
|
src_lg=src_lg, |
|
tgt_lg=tgt_lg, |
|
|
|
url=f"{_STATMT_URL}{src_cc}-{tgt_cc}.bitextf.tsv.gz", |
|
) |
|
|
|
return list(configs.values()) |
|
|
|
|
|
class NLLB(datasets.GeneratorBasedBuilder): |
|
"""No Language Left Behind Dataset.""" |
|
|
|
BUILDER_CONFIGS = _builder_configs() |
|
BUILDER_CONFIG_CLASS = NLLBTaskConfig |
|
|
|
def _info(self): |
|
|
|
citation = NLLB_CITATION |
|
features = datasets.Features( |
|
{ |
|
"translation": datasets.Translation( |
|
languages=(self.config.src_lg, self.config.tgt_lg) |
|
), |
|
"laser_score": datasets.Value("float32"), |
|
"source_sentence_lid": datasets.Value("float32"), |
|
"target_sentence_lid": datasets.Value("float32"), |
|
"source_sentence_source": datasets.Value("string"), |
|
"source_sentence_perplexity": datasets.Value("float32"), |
|
"source_sentence_url": datasets.Value("string"), |
|
"target_sentence_source": datasets.Value("string"), |
|
"target_sentence_perplexity": datasets.Value("float32"), |
|
"target_sentence_url": datasets.Value("string"), |
|
} |
|
) |
|
if self.config.source == "statmt": |
|
citation = CCMATRIX_CITATION |
|
|
|
features = datasets.Features( |
|
{ |
|
"translation": datasets.Translation( |
|
languages=(self.config.src_lg, self.config.tgt_lg) |
|
), |
|
"laser_score": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns one training generator. NLLB200 is meant for training. |
|
|
|
If you're interested in evaluation look at https://huggingface.co/datasets/facebook/flores |
|
""" |
|
local_file = dl_manager.download_and_extract(self.config.url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": local_file, |
|
"source_lg": self.config.src_lg, |
|
"target_lg": self.config.tgt_lg, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath, source_lg, target_lg, source_max_perplexity=None, target_max_perplexity=None): |
|
if self.config.source == "statmt": |
|
|
|
return self._generate_minimal_examples(filepath, source_lg, target_lg) |
|
|
|
return self._generate_full_examples(filepath, source_lg, target_lg, source_max_perplexity=source_max_perplexity, target_max_perplexity=target_max_perplexity) |
|
|
|
def _generate_full_examples(self, filepath, source_lg, target_lg, source_max_perplexity=None, target_max_perplexity=None): |
|
with open(filepath, encoding="utf-8") as f: |
|
|
|
for id_, example in enumerate(f): |
|
try: |
|
datarow = example.rstrip("\n").split("\t") |
|
row = {} |
|
|
|
row["translation"] = { |
|
source_lg: datarow[0], |
|
target_lg: datarow[1], |
|
} |
|
|
|
row["source_sentence_perplexity"] = None |
|
row["target_sentence_perplexity"] = None |
|
row["laser_score"] = float(datarow[2]) |
|
row["source_sentence_lid"] = float(datarow[3]) |
|
row["target_sentence_lid"] = float(datarow[4]) |
|
row["source_sentence_source"] = datarow[5] |
|
row["source_sentence_url"] = datarow[6] |
|
row["target_sentence_source"] = datarow[7] |
|
row["target_sentence_url"] = datarow[8] |
|
|
|
row = {k: None if not v else v for k, v in row.items()} |
|
except: |
|
print(datarow) |
|
raise |
|
if source_max_perplexity is not None and row["source_sentence_perplexity"] > source_max_perplexity: |
|
continue |
|
if target_max_perplexity is not None and row["target_sentence_perplexity"] > target_max_perplexity: |
|
continue |
|
yield id_, row |
|
|
|
def _generate_minimal_examples(self, filepath, source_lg, target_lg): |
|
with open(filepath, encoding="utf-8") as f: |
|
for i, example in enumerate(f): |
|
try: |
|
(score, src, tgt) = example.rstrip("\n").split("\t") |
|
row = { |
|
"translation": { |
|
source_lg: src, |
|
target_lg: tgt, |
|
}, |
|
"laser_score": score, |
|
} |
|
except: |
|
print(example) |
|
raise |
|
yield i, row |
|
|
|
|
|
|
|
|
|
|