yhcao commited on
Commit
79855f2
·
verified ·
1 Parent(s): 6a37078

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -20
README.md CHANGED
@@ -1,20 +1,53 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- dataset_info:
4
- features:
5
- - name: image
6
- dtype: string
7
- - name: label
8
- dtype: string
9
- splits:
10
- - name: train
11
- num_bytes: 17286021131
12
- num_examples: 405055
13
- download_size: 17266005314
14
- dataset_size: 17286021131
15
- configs:
16
- - config_name: default
17
- data_files:
18
- - split: train
19
- path: data/train-*
20
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ dataset_info:
4
+ features:
5
+ - name: image
6
+ dtype: string
7
+ - name: label
8
+ dtype: string
9
+ splits:
10
+ - name: train
11
+ num_bytes: 17286021131
12
+ num_examples: 405055
13
+ download_size: 17266005314
14
+ dataset_size: 17286021131
15
+ configs:
16
+ - config_name: default
17
+ data_files:
18
+ - split: train
19
+ path: data/train-*
20
+ ---
21
+
22
+
23
+ ### Install datasets package
24
+ First, make sure you have the datasets library installed. If not, you can install it using:
25
+
26
+ ```bash
27
+ pip install datasets
28
+ ```
29
+
30
+ ### Load Dataset from Arrow File
31
+ Download all arrow files to local_path. The follow is how to load arrow files and decode image:
32
+
33
+ ```python
34
+ from datasets import load_from_disk
35
+ from io import BytesIO
36
+ import base64
37
+ from PIL import Image
38
+ import mmengine
39
+
40
+
41
+ # Path to your Arrow dataset directory
42
+ arrow_dataset_path = 'path_to_your_arrow_dataset_directory'
43
+
44
+ # Load the dataset
45
+ dataset = load_from_disk(arrow_dataset_path)
46
+ cat_tree = mmengine.load('v3det_2023_v1_category_tree.json')
47
+
48
+ # Each dataset entry is composed of an image in the format of base64 string and its corresponding imagenet label id
49
+ # Here is an example of how to decode image, and convert imagenet label id to v3det class name
50
+ # You can download v3det_2023_v1_category_tree.json here: https://v3det.openxlab.org.cn/download
51
+ image = Image.open(BytesIO(base64.b64decode(dataset[0]['image'])))
52
+ cat_name = cat_tree['id2name'][dataset[0]['label']]
53
+ ```