yilunzhao commited on
Commit
6deb114
·
1 Parent(s): 9de3f1c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md CHANGED
@@ -1,3 +1,96 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ - found
5
+ configs:
6
+ - config_name: default
7
+ data_files:
8
+ - split: validation
9
+ path: validation.json
10
+ - split: test
11
+ path: test.json
12
+ dataset_info:
13
+ features:
14
+ - name: question_id
15
+ dtype: string
16
+ - name: question
17
+ dtype: string
18
+ - name: tables
19
+ dtype: list
20
+ - name: topic
21
+ dtype: string
22
+ - name: python_solution
23
+ dtype: string
24
+ - name: ground_truth
25
+ sequence: float
26
  license: mit
27
  ---
28
+ ## Dataset Description
29
+
30
+ **KnowledgeMath** is a knowledge-intensive dataset focused on mathematical reasoning within the domain of finance. It requires the model to comprehend specialized financial terminology and to interpret tabular data presented in the questions.
31
+ **KnowledgeMath** includes **1200 QA examples** across 7 key areas in finance. These examples were collected from financial experts and feature detailed solution annotations in Python format.
32
+
33
+ ## Dataset Information
34
+
35
+ - Paper: https://arxiv.org/abs/2311.09797
36
+ - Code: https://github.com/yale-nlp/KnowledgeMath
37
+ - Leaderboard: will be released soon!
38
+
39
+ ### Data Downloading and Usage
40
+
41
+ All the data examples were divided into two subsets: *validation* and *test*.
42
+
43
+ - **validation**: 200 examples used for model development, validation, or for those with limited computing resources.
44
+ - **test**: 1000 examples for standard evaluation. We will not publicly release the annotated solution and answer for the test set.
45
+
46
+ You can download this dataset by the following command:
47
+
48
+ ```python
49
+ from datasets import load_dataset
50
+
51
+ dataset = load_dataset("yale-nlp/KnowledgeMath")
52
+ ```
53
+
54
+ Here are some examples of how to access the downloaded dataset:
55
+
56
+ ```python
57
+ # print the first example on the validation set
58
+ print(dataset["validation"][0])
59
+
60
+ # print the first example on the test set
61
+ print(dataset["test"][0])
62
+ ```
63
+
64
+ ### Data Format
65
+
66
+ The dataset is provided in json format and contains the following attributes:
67
+
68
+ ```json
69
+ {
70
+ "question_id": [string] The question id,
71
+ "question": [string] The question text,
72
+ "tables": [list] List of Markdown-format tables associated with the question,
73
+ "python_solution": [string] Python-format and executable solution by financial experts. The code is written in a clear and executable format, with well-named variables and a detailed explanation,
74
+ "ground_truth": [integer] Executed result of `python solution`, rounded to three decimal places,
75
+ "topic": [string] The related financial area of the question
76
+ }
77
+ ```
78
+
79
+ ### Automated Evaluation
80
+
81
+ To automatically evaluate a model on **KnowledgeMath**, please refer to our GitHub repository [here](https://github.com/yale-nlp/KnowledgeMath).
82
+
83
+ ## Citation
84
+
85
+ If you use the **KnowledgeMath** dataset in your work, please kindly cite the paper:
86
+
87
+ ```
88
+ @misc{zhao2023knowledgemath,
89
+ title={KnowledgeMath: Knowledge-Intensive Math Word Problem Solving in Finance Domains},
90
+ author={Yilun Zhao and Hongjun Liu and Yitao Long and Rui Zhang and Chen Zhao and Arman Cohan},
91
+ year={2023},
92
+ eprint={2311.09797},
93
+ archivePrefix={arXiv},
94
+ primaryClass={cs.CL}
95
+ }
96
+ ```