pale / pale.py
zeio's picture
feat(dataset-loader): added dataset loader script
219741e verified
raw
history blame
3.1 kB
from pandas import read_csv
from datasets import GeneratorBasedBuilder, Value, Version, BuilderConfig, Features, DatasetInfo, SplitGenerator, Split
_DESCRIPTION = '''
This dataset contains transcribed sounds emitted by characters of the League of Legends game.
The data can be useful for building text classification models, fine-tuning language generation models, speech synthesis and speech recognition models.
The underlying web dump for the dataset construction has been last refreshed **20.10.2023**
'''
_HOMEPAGE = 'https://huggingface.co/datasets/zeio/pale'
_LICENSE = 'Apache License Version 2.0'
_URLS = {
'full': 'https://huggingface.co/datasets/zeio/pale/resolve/main/pale.tsv',
'quotes': 'https://huggingface.co/datasets/zeio/pale/resolve/main/quotes.tsv',
'annotated': 'https://huggingface.co/datasets/zeio/pale/resolve/main/annotated.tsv'
}
class Pale(GeneratorBasedBuilder):
VERSION = Version('27.10.2023')
BUILDER_CONFIGS = [
BuilderConfig(name = 'quotes', version = VERSION, description = 'Truncated version of the corpus, which does\'t contain sound effects'),
BuilderConfig(name = 'annotated', version = VERSION, description = 'An extended version of the full configuration with a couple of additional columns with labels'),
BuilderConfig(name = 'vanilla', version = VERSION, description = 'All data pulled from the website without significant modifications apart from the web page structure parsing')
]
DEFAULT_CONFIG_NAME = 'quotes'
def _info(self):
if self.config.name == 'vanilla':
features = Features({
'header': Value('string'),
'subheader': Value('string'),
'text': Value('string'),
'source': Value('string'),
'champion': Value('string')
})
elif self.config.name == 'annotated':
features = Features({
'header': Value('string'),
'subheader': Value('string'),
'text': Value('string'),
'source': Value('string'),
'champion': Value('string'),
'quote': Value('bool')
})
elif self.config.name == 'quotes':
features = Features({
'header': Value('string'),
'subheader': Value('string'),
'text': Value('string'),
'champion': Value('string')
})
return DatasetInfo(
description=_DESCRIPTION,
features = features,
homepage=_HOMEPAGE,
license=_LICENSE
)
def _split_generators(self, dl_manager):
name = self.config.name
url = _URLS[name]
return [
SplitGenerator(
name = Split.TRAIN,
gen_kwargs = {
"path": dl_manager.download_and_extract(url)
}
)
]
def _generate_examples(self, path: str):
for i, row in read_csv(path, sep = '\t').iterrows():
yield i, dict(row)