# coding=utf-8 # Lint as: python3 """Passage Ranking fintune dataset.""" import json import datasets _CITATION = """ @article{Qiu2022DuReader\_retrievalAL, title={DuReader\_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine}, author={Yifu Qiu and Hongyu Li and Yingqi Qu and Ying Chen and Qiaoqiao She and Jing Liu and Hua Wu and Haifeng Wang}, journal={ArXiv}, year={2022}, volume={abs/2203.10232} } """ _DESCRIPTION = "DuReader-retrieval datas" _DATASET_URLS = { 'corpus': "https://huggingface.co/datasets/zyznull/dureader-retrieval-corpus/resolve/main/passage_collection.tsv.gz", 'train_query': "https://huggingface.co/datasets/zyznull/dureader-retrieval-corpus/resolve/main/queries.train.tsv.gz", 'dev_query': "https://huggingface.co/datasets/zyznull/dureader-retrieval-corpus/resolve/main/queries.dev.tsv.gz", } class Dureader(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(version=VERSION, description="MS MARCO passage corpus"), ] def _info(self): features = datasets.Features({ '_id': datasets.Value('string'), 'text': datasets.Value('string'), }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): """Yields examples.""" for filepath in files: with open(filepath, encoding="utf-8") as f: for i, line in enumerate(f): line = line.strip().split('\t') item = {'_id': line[0], 'text': line[1]} yield i, item