End of training
Browse files
README.md
CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/bert-job-german-extended](https://huggingface.co/dathi103/bert-job-german-extended) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Hard: {'precision': 0.
|
20 |
-
- Soft: {'precision': 0.
|
21 |
-
- Overall Precision: 0.
|
22 |
-
- Overall Recall: 0.
|
23 |
-
- Overall F1: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,13 +50,13 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Hard
|
54 |
-
|
55 |
-
| No log | 1.0 |
|
56 |
-
| No log | 2.0 |
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/bert-job-german-extended](https://huggingface.co/dathi103/bert-job-german-extended) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1440
|
19 |
+
- Hard: {'precision': 0.7093596059113301, 'recall': 0.7933884297520661, 'f1': 0.7490247074122237, 'number': 363}
|
20 |
+
- Soft: {'precision': 0.7058823529411765, 'recall': 0.7272727272727273, 'f1': 0.7164179104477613, 'number': 66}
|
21 |
+
- Overall Precision: 0.7089
|
22 |
+
- Overall Recall: 0.7832
|
23 |
+
- Overall F1: 0.7442
|
24 |
+
- Overall Accuracy: 0.9650
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| No log | 1.0 | 178 | 0.1035 | {'precision': 0.6582278481012658, 'recall': 0.7162534435261708, 'f1': 0.6860158311345645, 'number': 363} | {'precision': 0.6451612903225806, 'recall': 0.6060606060606061, 'f1': 0.625, 'number': 66} | 0.6565 | 0.6993 | 0.6772 | 0.9597 |
|
56 |
+
| No log | 2.0 | 356 | 0.1067 | {'precision': 0.6641414141414141, 'recall': 0.7245179063360881, 'f1': 0.6930171277997365, 'number': 363} | {'precision': 0.676923076923077, 'recall': 0.6666666666666666, 'f1': 0.6717557251908397, 'number': 66} | 0.6659 | 0.7156 | 0.6899 | 0.9634 |
|
57 |
+
| 0.1072 | 3.0 | 534 | 0.1204 | {'precision': 0.7079207920792079, 'recall': 0.7878787878787878, 'f1': 0.7457627118644068, 'number': 363} | {'precision': 0.6956521739130435, 'recall': 0.7272727272727273, 'f1': 0.711111111111111, 'number': 66} | 0.7061 | 0.7786 | 0.7406 | 0.9652 |
|
58 |
+
| 0.1072 | 4.0 | 712 | 0.1350 | {'precision': 0.7178841309823678, 'recall': 0.7851239669421488, 'f1': 0.7500000000000001, 'number': 363} | {'precision': 0.6956521739130435, 'recall': 0.7272727272727273, 'f1': 0.711111111111111, 'number': 66} | 0.7146 | 0.7762 | 0.7441 | 0.9644 |
|
59 |
+
| 0.1072 | 5.0 | 890 | 0.1440 | {'precision': 0.7093596059113301, 'recall': 0.7933884297520661, 'f1': 0.7490247074122237, 'number': 363} | {'precision': 0.7058823529411765, 'recall': 0.7272727272727273, 'f1': 0.7164179104477613, 'number': 66} | 0.7089 | 0.7832 | 0.7442 | 0.9650 |
|
60 |
|
61 |
|
62 |
### Framework versions
|