--- license: apache-2.0 tags: - summarization datasets: - multi_news metrics: - rouge model-index: - name: distilbart-cnn-12-6-ftn-multi_news results: - task: name: Sequence-to-sequence Language Modeling type: summarization dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 41.6136 --- # distilbart-cnn-12-6-ftn-multi_news This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 3.8143 - Rouge1: 41.6136 - Rouge2: 14.7454 - Rougel: 23.3597 - Rougelsum: 36.1973 - Gen Len: 130.874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 3.8821 | 0.89 | 2000 | 3.8143 | 41.6136 | 14.7454 | 23.3597 | 36.1973 | 130.874 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1