File size: 6,750 Bytes
7481a01
 
 
 
 
759ec5a
f38b2dd
7481a01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759ec5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- biglam/loc_beyond_words
base_model: microsoft/conditional-detr-resnet-50
model-index:
- name: conditional-detr-resnet-50_fine_tuned_beyond_words
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# conditional-detr-resnet-50_fine_tuned_beyond_words

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the loc_beyond_words dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5892

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 6.674         | 0.28  | 100   | 1.7571          |
| 1.4721        | 0.56  | 200   | 1.2737          |
| 1.2557        | 0.84  | 300   | 1.1037          |
| 1.0781        | 1.12  | 400   | 1.0184          |
| 1.0353        | 1.4   | 500   | 0.9988          |
| 1.0324        | 1.69  | 600   | 0.9951          |
| 0.9131        | 1.97  | 700   | 0.9224          |
| 0.8724        | 2.25  | 800   | 0.9692          |
| 0.8129        | 2.53  | 900   | 0.8670          |
| 0.9           | 2.81  | 1000  | 0.8326          |
| 0.7993        | 3.09  | 1100  | 0.7875          |
| 0.7907        | 3.37  | 1200  | 0.7517          |
| 0.8424        | 3.65  | 1300  | 0.9088          |
| 0.7808        | 3.93  | 1400  | 0.8506          |
| 0.7469        | 4.21  | 1500  | 0.7928          |
| 0.7582        | 4.49  | 1600  | 0.7228          |
| 0.7546        | 4.78  | 1700  | 0.7588          |
| 0.7842        | 5.06  | 1800  | 0.7726          |
| 0.775         | 5.34  | 1900  | 0.7676          |
| 0.7263        | 5.62  | 2000  | 0.7164          |
| 0.7209        | 5.9   | 2100  | 0.7061          |
| 0.7259        | 6.18  | 2200  | 0.7579          |
| 0.7701        | 6.46  | 2300  | 0.8184          |
| 0.7391        | 6.74  | 2400  | 0.6684          |
| 0.6834        | 7.02  | 2500  | 0.7042          |
| 0.7098        | 7.3   | 2600  | 0.7166          |
| 0.7498        | 7.58  | 2700  | 0.6752          |
| 0.7056        | 7.87  | 2800  | 0.7064          |
| 0.7004        | 8.15  | 2900  | 0.7090          |
| 0.6964        | 8.43  | 3000  | 0.7318          |
| 0.682         | 8.71  | 3100  | 0.7216          |
| 0.7309        | 8.99  | 3200  | 0.6545          |
| 0.6576        | 9.27  | 3300  | 0.6478          |
| 0.7014        | 9.55  | 3400  | 0.6814          |
| 0.673         | 9.83  | 3500  | 0.6783          |
| 0.6455        | 10.11 | 3600  | 0.7248          |
| 0.7041        | 10.39 | 3700  | 0.7729          |
| 0.6664        | 10.67 | 3800  | 0.6746          |
| 0.6161        | 10.96 | 3900  | 0.6414          |
| 0.6975        | 11.24 | 4000  | 0.6637          |
| 0.6751        | 11.52 | 4100  | 0.6570          |
| 0.6092        | 11.8  | 4200  | 0.6691          |
| 0.6593        | 12.08 | 4300  | 0.6276          |
| 0.6449        | 12.36 | 4400  | 0.6388          |
| 0.6136        | 12.64 | 4500  | 0.6711          |
| 0.6521        | 12.92 | 4600  | 0.6768          |
| 0.6162        | 13.2  | 4700  | 0.6427          |
| 0.7083        | 13.48 | 4800  | 0.6492          |
| 0.6407        | 13.76 | 4900  | 0.6213          |
| 0.6371        | 14.04 | 5000  | 0.6674          |
| 0.626         | 14.33 | 5100  | 0.6185          |
| 0.6442        | 14.61 | 5200  | 0.7180          |
| 0.5981        | 14.89 | 5300  | 0.6441          |
| 0.629         | 15.17 | 5400  | 0.6262          |
| 0.625         | 15.45 | 5500  | 0.6397          |
| 0.6123        | 15.73 | 5600  | 0.6440          |
| 0.6084        | 16.01 | 5700  | 0.6493          |
| 0.6021        | 16.29 | 5800  | 0.6263          |
| 0.6502        | 16.57 | 5900  | 0.6254          |
| 0.6339        | 16.85 | 6000  | 0.7043          |
| 0.5925        | 17.13 | 6100  | 0.8014          |
| 0.6453        | 17.42 | 6200  | 0.6385          |
| 0.6143        | 17.7  | 6300  | 0.6033          |
| 0.6057        | 17.98 | 6400  | 0.6881          |
| 0.6386        | 18.26 | 6500  | 0.6366          |
| 0.5839        | 18.54 | 6600  | 0.6563          |
| 0.6013        | 18.82 | 6700  | 0.5982          |
| 0.5999        | 19.1  | 6800  | 0.6064          |
| 0.6023        | 19.38 | 6900  | 0.5795          |
| 0.5593        | 19.66 | 7000  | 0.6538          |
| 0.6375        | 19.94 | 7100  | 0.6991          |
| 0.6073        | 20.22 | 7200  | 0.7117          |
| 0.596         | 20.51 | 7300  | 0.6034          |
| 0.5987        | 20.79 | 7400  | 0.6489          |
| 0.5922        | 21.07 | 7500  | 0.6216          |
| 0.589         | 21.35 | 7600  | 0.6257          |
| 0.6047        | 21.63 | 7700  | 0.6415          |
| 0.5775        | 21.91 | 7800  | 0.6159          |
| 0.588         | 22.19 | 7900  | 0.6095          |
| 0.5844        | 22.47 | 8000  | 0.6373          |
| 0.5964        | 22.75 | 8100  | 0.6022          |
| 0.5987        | 23.03 | 8200  | 0.6050          |
| 0.5605        | 23.31 | 8300  | 0.6083          |
| 0.5835        | 23.6  | 8400  | 0.7823          |
| 0.5816        | 23.88 | 8500  | 0.6417          |
| 0.5757        | 24.16 | 8600  | 0.6324          |
| 0.5997        | 24.44 | 8700  | 0.6046          |
| 0.5674        | 24.72 | 8800  | 0.6558          |
| 0.5703        | 25.0  | 8900  | 0.5819          |
| 0.5766        | 25.28 | 9000  | 0.6116          |
| 0.5548        | 25.56 | 9100  | 0.5877          |
| 0.564         | 25.84 | 9200  | 0.5672          |
| 0.548         | 26.12 | 9300  | 0.6073          |
| 0.5436        | 26.4  | 9400  | 0.5739          |
| 0.6006        | 26.69 | 9500  | 0.6101          |
| 0.5519        | 26.97 | 9600  | 0.5869          |
| 0.5432        | 27.25 | 9700  | 0.5721          |
| 0.5597        | 27.53 | 9800  | 0.5807          |
| 0.5254        | 27.81 | 9900  | 0.5849          |
| 0.5366        | 28.09 | 10000 | 0.5831          |
| 0.5654        | 28.37 | 10100 | 0.5993          |
| 0.57          | 28.65 | 10200 | 0.5892          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2