File size: 4,610 Bytes
6e77e59
 
 
885ea28
6e77e59
7b2ef42
 
6e77e59
 
 
 
 
 
 
 
 
 
 
 
 
7b2ef42
6e77e59
7b2ef42
 
6e77e59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885ea28
 
6e77e59
 
 
885ea28
6e77e59
 
 
 
 
885ea28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e77e59
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
library_name: transformers
license: apache-2.0
base_model: timm/mobilenetv3_large_100.miil_in21k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: test-timm
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# test-timm

This model is a fine-tuned version of [timm/mobilenetv3_large_100.miil_in21k](https://huggingface.co/timm/mobilenetv3_large_100.miil_in21k) on the davanstrien/zenodo-presentations-open-labels dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4904
- Accuracy: 0.7874

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6794        | 1.0   | 23   | 0.6560          | 0.6063   |
| 0.6215        | 2.0   | 46   | 0.5833          | 0.7362   |
| 0.5784        | 3.0   | 69   | 0.5490          | 0.7598   |
| 0.5347        | 4.0   | 92   | 0.5306          | 0.7638   |
| 0.5307        | 5.0   | 115  | 0.5235          | 0.7638   |
| 0.5391        | 6.0   | 138  | 0.5090          | 0.7677   |
| 0.48          | 7.0   | 161  | 0.5108          | 0.7717   |
| 0.473         | 8.0   | 184  | 0.5028          | 0.7756   |
| 0.5014        | 9.0   | 207  | 0.5054          | 0.7717   |
| 0.496         | 10.0  | 230  | 0.5040          | 0.7717   |
| 0.4688        | 11.0  | 253  | 0.4972          | 0.7677   |
| 0.4943        | 12.0  | 276  | 0.4977          | 0.7638   |
| 0.5012        | 13.0  | 299  | 0.5057          | 0.7717   |
| 0.4639        | 14.0  | 322  | 0.5010          | 0.7717   |
| 0.4709        | 15.0  | 345  | 0.4949          | 0.7795   |
| 0.4888        | 16.0  | 368  | 0.4955          | 0.7835   |
| 0.4594        | 17.0  | 391  | 0.4986          | 0.7717   |
| 0.4745        | 18.0  | 414  | 0.5011          | 0.7677   |
| 0.4667        | 19.0  | 437  | 0.4928          | 0.7756   |
| 0.4551        | 20.0  | 460  | 0.5055          | 0.7795   |
| 0.4657        | 21.0  | 483  | 0.4928          | 0.7756   |
| 0.4818        | 22.0  | 506  | 0.5002          | 0.7756   |
| 0.4633        | 23.0  | 529  | 0.4946          | 0.7835   |
| 0.4779        | 24.0  | 552  | 0.4942          | 0.7795   |
| 0.4718        | 25.0  | 575  | 0.4963          | 0.7835   |
| 0.4511        | 26.0  | 598  | 0.5011          | 0.7717   |
| 0.4798        | 27.0  | 621  | 0.4904          | 0.7874   |
| 0.4868        | 28.0  | 644  | 0.4982          | 0.7835   |
| 0.4653        | 29.0  | 667  | 0.4988          | 0.7874   |
| 0.4613        | 30.0  | 690  | 0.4985          | 0.7795   |
| 0.4675        | 31.0  | 713  | 0.5060          | 0.7717   |
| 0.4587        | 32.0  | 736  | 0.5059          | 0.7717   |
| 0.464         | 33.0  | 759  | 0.5042          | 0.7795   |
| 0.4374        | 34.0  | 782  | 0.5063          | 0.7677   |
| 0.4864        | 35.0  | 805  | 0.5040          | 0.7677   |
| 0.4354        | 36.0  | 828  | 0.5109          | 0.7717   |
| 0.4655        | 37.0  | 851  | 0.5107          | 0.7717   |
| 0.4691        | 38.0  | 874  | 0.5093          | 0.7677   |
| 0.4826        | 39.0  | 897  | 0.5044          | 0.7717   |
| 0.4577        | 40.0  | 920  | 0.5000          | 0.7795   |
| 0.4636        | 41.0  | 943  | 0.4963          | 0.7717   |
| 0.4361        | 42.0  | 966  | 0.4958          | 0.7717   |
| 0.4534        | 43.0  | 989  | 0.5008          | 0.7795   |
| 0.4559        | 44.0  | 1012 | 0.5025          | 0.7795   |
| 0.4189        | 45.0  | 1035 | 0.5014          | 0.7756   |
| 0.4861        | 46.0  | 1058 | 0.5004          | 0.7677   |
| 0.4709        | 47.0  | 1081 | 0.5005          | 0.7795   |
| 0.4726        | 48.0  | 1104 | 0.5008          | 0.7717   |
| 0.4441        | 49.0  | 1127 | 0.4988          | 0.7756   |
| 0.4579        | 50.0  | 1150 | 0.5000          | 0.7756   |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1