--- library_name: transformers license: apache-2.0 base_model: timm/resnet18.a1_in1k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: test-timm results: [] --- # test-timm This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) on the davanstrien/zenodo-presentations-open-labels dataset. It achieves the following results on the evaluation set: - Loss: 0.5247 - Accuracy: 0.6811 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6138 | 1.0 | 180 | 0.6002 | 0.6811 | | 0.5028 | 2.0 | 360 | 0.5529 | 0.6811 | | 0.5103 | 3.0 | 540 | 0.5325 | 0.6811 | | 0.4892 | 4.0 | 720 | 0.5247 | 0.6811 | | 0.5779 | 5.0 | 900 | 0.5302 | 0.6811 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1