--- library_name: transformers license: apache-2.0 base_model: timm/mobilenetv3_large_100.miil_in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: test-timm results: [] --- # test-timm This model is a fine-tuned version of [timm/mobilenetv3_large_100.miil_in21k](https://huggingface.co/timm/mobilenetv3_large_100.miil_in21k) on the davanstrien/zenodo-presentations-open-labels dataset. It achieves the following results on the evaluation set: - Loss: 0.4904 - Accuracy: 0.7874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6794 | 1.0 | 23 | 0.6560 | 0.6063 | | 0.6215 | 2.0 | 46 | 0.5833 | 0.7362 | | 0.5784 | 3.0 | 69 | 0.5490 | 0.7598 | | 0.5347 | 4.0 | 92 | 0.5306 | 0.7638 | | 0.5307 | 5.0 | 115 | 0.5235 | 0.7638 | | 0.5391 | 6.0 | 138 | 0.5090 | 0.7677 | | 0.48 | 7.0 | 161 | 0.5108 | 0.7717 | | 0.473 | 8.0 | 184 | 0.5028 | 0.7756 | | 0.5014 | 9.0 | 207 | 0.5054 | 0.7717 | | 0.496 | 10.0 | 230 | 0.5040 | 0.7717 | | 0.4688 | 11.0 | 253 | 0.4972 | 0.7677 | | 0.4943 | 12.0 | 276 | 0.4977 | 0.7638 | | 0.5012 | 13.0 | 299 | 0.5057 | 0.7717 | | 0.4639 | 14.0 | 322 | 0.5010 | 0.7717 | | 0.4709 | 15.0 | 345 | 0.4949 | 0.7795 | | 0.4888 | 16.0 | 368 | 0.4955 | 0.7835 | | 0.4594 | 17.0 | 391 | 0.4986 | 0.7717 | | 0.4745 | 18.0 | 414 | 0.5011 | 0.7677 | | 0.4667 | 19.0 | 437 | 0.4928 | 0.7756 | | 0.4551 | 20.0 | 460 | 0.5055 | 0.7795 | | 0.4657 | 21.0 | 483 | 0.4928 | 0.7756 | | 0.4818 | 22.0 | 506 | 0.5002 | 0.7756 | | 0.4633 | 23.0 | 529 | 0.4946 | 0.7835 | | 0.4779 | 24.0 | 552 | 0.4942 | 0.7795 | | 0.4718 | 25.0 | 575 | 0.4963 | 0.7835 | | 0.4511 | 26.0 | 598 | 0.5011 | 0.7717 | | 0.4798 | 27.0 | 621 | 0.4904 | 0.7874 | | 0.4868 | 28.0 | 644 | 0.4982 | 0.7835 | | 0.4653 | 29.0 | 667 | 0.4988 | 0.7874 | | 0.4613 | 30.0 | 690 | 0.4985 | 0.7795 | | 0.4675 | 31.0 | 713 | 0.5060 | 0.7717 | | 0.4587 | 32.0 | 736 | 0.5059 | 0.7717 | | 0.464 | 33.0 | 759 | 0.5042 | 0.7795 | | 0.4374 | 34.0 | 782 | 0.5063 | 0.7677 | | 0.4864 | 35.0 | 805 | 0.5040 | 0.7677 | | 0.4354 | 36.0 | 828 | 0.5109 | 0.7717 | | 0.4655 | 37.0 | 851 | 0.5107 | 0.7717 | | 0.4691 | 38.0 | 874 | 0.5093 | 0.7677 | | 0.4826 | 39.0 | 897 | 0.5044 | 0.7717 | | 0.4577 | 40.0 | 920 | 0.5000 | 0.7795 | | 0.4636 | 41.0 | 943 | 0.4963 | 0.7717 | | 0.4361 | 42.0 | 966 | 0.4958 | 0.7717 | | 0.4534 | 43.0 | 989 | 0.5008 | 0.7795 | | 0.4559 | 44.0 | 1012 | 0.5025 | 0.7795 | | 0.4189 | 45.0 | 1035 | 0.5014 | 0.7756 | | 0.4861 | 46.0 | 1058 | 0.5004 | 0.7677 | | 0.4709 | 47.0 | 1081 | 0.5005 | 0.7795 | | 0.4726 | 48.0 | 1104 | 0.5008 | 0.7717 | | 0.4441 | 49.0 | 1127 | 0.4988 | 0.7756 | | 0.4579 | 50.0 | 1150 | 0.5000 | 0.7756 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1