--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder metrics: - wer model-index: - name: donut-base-sroie-metrics-combined results: [] --- # donut-base-sroie-metrics-combined This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2827 - Bleu score: 0.0762 - Precisions: [0.8396396396396396, 0.7886178861788617, 0.7435897435897436, 0.7049180327868853] - Brevity penalty: 0.0993 - Length ratio: 0.3021 - Translation length: 555 - Reference length: 1837 - Cer: 0.7452 - Wer: 0.8162 - Cer Hugging Face: 0.7544 - Wer Hugging Face: 0.8233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu score | Precisions | Brevity penalty | Length ratio | Translation length | Reference length | Cer | Wer | Cer Hugging Face | Wer Hugging Face | |:-------------:|:-----:|:----:|:---------------:|:----------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:|:----------------:|:----------------:| | No log | 0.99 | 62 | 0.3478 | 0.0756 | [0.8178571428571428, 0.7625754527162978, 0.7142857142857143, 0.6711590296495957] | 0.1022 | 0.3048 | 560 | 1837 | 0.7474 | 0.8243 | 0.7570 | 0.8333 | | 0.2634 | 2.0 | 125 | 0.2873 | 0.0763 | [0.8345323741007195, 0.7829614604462475, 0.7418604651162791, 0.7029972752043597] | 0.0999 | 0.3027 | 556 | 1837 | 0.7435 | 0.8219 | 0.7527 | 0.8288 | | 0.2634 | 2.99 | 187 | 0.2817 | 0.0777 | [0.8369175627240143, 0.7838383838383839, 0.7476851851851852, 0.7127371273712737] | 0.1011 | 0.3038 | 558 | 1837 | 0.7407 | 0.8152 | 0.7498 | 0.8215 | | 0.263 | 3.97 | 248 | 0.2827 | 0.0762 | [0.8396396396396396, 0.7886178861788617, 0.7435897435897436, 0.7049180327868853] | 0.0993 | 0.3021 | 555 | 1837 | 0.7452 | 0.8162 | 0.7544 | 0.8233 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.15.2