--- license: apache-2.0 base_model: NbAiLab/nb-whisper-large tags: - generated_from_trainer datasets: - ravnursson_asr metrics: - wer model-index: - name: whisper-large-no-fo-100h-30k-steps results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ravnursson_asr type: ravnursson_asr config: ravnursson_asr split: test args: ravnursson_asr metrics: - name: Wer type: wer value: 4.066841151600563 --- [Visualize in Weights & Biases](https://wandb.ai/setur/huggingface/runs/apivajor) # whisper-large-no-fo-100h-30k-steps This model is a fine-tuned version of [NbAiLab/nb-whisper-large](https://huggingface.co/NbAiLab/nb-whisper-large) on the ravnursson_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.0743 - Wer: 4.0668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 30000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.2496 | 0.2320 | 1000 | 0.2656 | 19.1061 | | 0.162 | 0.4640 | 2000 | 0.1777 | 13.0914 | | 0.1308 | 0.6961 | 3000 | 0.1410 | 10.9573 | | 0.1272 | 0.9281 | 4000 | 0.1217 | 9.6889 | | 0.0629 | 1.1601 | 5000 | 0.1131 | 8.5263 | | 0.0636 | 1.3921 | 6000 | 0.1089 | 8.4004 | | 0.053 | 1.6241 | 7000 | 0.1026 | 7.3384 | | 0.0528 | 1.8561 | 8000 | 0.0911 | 6.9609 | | 0.0232 | 2.0882 | 9000 | 0.0963 | 6.9307 | | 0.0218 | 2.3202 | 10000 | 0.0936 | 6.6841 | | 0.0241 | 2.5522 | 11000 | 0.0868 | 6.4526 | | 0.0326 | 2.7842 | 12000 | 0.0866 | 6.5331 | | 0.0136 | 3.0162 | 13000 | 0.0820 | 5.6020 | | 0.0098 | 3.2483 | 14000 | 0.0822 | 5.5969 | | 0.0116 | 3.4803 | 15000 | 0.0806 | 5.4812 | | 0.0117 | 3.7123 | 16000 | 0.0811 | 5.4963 | | 0.013 | 3.9443 | 17000 | 0.0792 | 5.3704 | | 0.0042 | 4.1763 | 18000 | 0.0778 | 4.8722 | | 0.0078 | 4.4084 | 19000 | 0.0795 | 4.8822 | | 0.0078 | 4.6404 | 20000 | 0.0785 | 4.7010 | | 0.0076 | 4.8724 | 21000 | 0.0763 | 4.7061 | | 0.0042 | 5.1044 | 22000 | 0.0753 | 4.5098 | | 0.0037 | 5.3364 | 23000 | 0.0765 | 4.5400 | | 0.0027 | 5.5684 | 24000 | 0.0757 | 4.4041 | | 0.0037 | 5.8005 | 25000 | 0.0745 | 4.4242 | | 0.0012 | 6.0325 | 26000 | 0.0742 | 4.3336 | | 0.0006 | 6.2645 | 27000 | 0.0744 | 4.1675 | | 0.0009 | 6.4965 | 28000 | 0.0760 | 4.1574 | | 0.0006 | 6.7285 | 29000 | 0.0743 | 4.1222 | | 0.0017 | 6.9606 | 30000 | 0.0743 | 4.0668 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1