File size: 6,236 Bytes
7853389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'hckl_style, A collection of radiolarians floating in water. Various species with different shapes and structures.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'hckl_style, A large jellyfish with trailing tentacles. Smaller jellyfish surround it in the ocean.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'hckl_style, A diverse coral reef ecosystem. Various types of coral, sea anemones, and small fish.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'hckl_style, An assortment of diatoms. Different species showcasing their unique geometric structures.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'hckl_style, hamster'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'hckl_style, a hipster making a chair'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'hckl_style, A detailed evolutionary tree diagram showing the relationships between various species.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'hckl_style, A modern microbiology laboratory with researchers using advanced microscopes and equipment.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'hckl_style, A bustling city street with skyscrapers, cars, and pedestrians.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'hckl_style, An orbiting space station with astronauts conducting experiments in zero gravity.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'hckl_style, A person scrolling through a social media feed on a smartphone, surrounded by floating app icons.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
- text: 'hckl_style, A energetic rock band performing on stage with a large crowd in the foreground.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_12_0.png
- text: 'hckl_style, A visual representation of artificial intelligence, with interconnected nodes and data streams.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_13_0.png
- text: 'a hamster, hckl_style'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_14_0.png
---
# Flux-Ernst-Haeckel-LoKr
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
a hamster, hckl_style
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `25`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 250
- Learning rate: 0.0001
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### ernst-haeckel-flux-512
- Repeats: 10
- Total number of images: 81
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### ernst-haeckel-flux-1024
- Repeats: 10
- Total number of images: 81
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### ernst-haeckel-flux-512-crop
- Repeats: 10
- Total number of images: 81
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### ernst-haeckel-flux-1024-crop
- Repeats: 10
- Total number of images: 81
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "a hamster, hckl_style"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=25,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```
|