metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: >-
p4t3ntm3ds, Elegant Victorian lady, Cordelia, holding a bottle of 'Dr.
Worthington's Miracle Elixir'. She stands in an ornate parlor. Text
proclaims the elixir's ability to cure all ailments and restore youth.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: >-
p4t3ntm3ds, Muscular man, Reginald, flexing while surrounded by bottles of
'Hercules Strength Tonic'. Ornate border includes before-and-after
vignettes. Bold text promises instant muscle growth.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: >-
p4t3ntm3ds, Professor Thaddeus demonstrating 'Cerebral Enhancement Drops'
to attentive students. Blackboard filled with complex equations. Text
boasts improved mental acuity and memory.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: >-
p4t3ntm3ds, Socialite Genevieve applying 'Madame Rosaline's Beauty Cream'.
Mirror reflects her radiant complexion. Floral border surrounds
testimonials from satisfied customers.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: >-
p4t3ntm3ds, The Thompson family gathered around table with 'Vitality
Biscuits' box. Each family member exhibits a different benefit: strength,
beauty, intelligence. Text explains unique formula.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
- text: >-
p4t3ntm3ds, Futuristic robot, Model X-29, holding 'Cyber Tonic 3000' in
art nouveau style laboratory. Text in LED display promises enhanced
processing power and rust prevention.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_6_0.png
- text: >-
p4t3ntm3ds, Astronaut Zephyr planting flag advertising 'Cosmic Vigor
Pills' on lunar surface. Earth visible in background. Text claims
protection against space radiation and zero-gravity fatigue.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_7_0.png
- text: >-
p4t3ntm3ds, Mermaid Princess Coral applying 'Sea Goddess Beauty Cream'
underwater. Fish swimming around ornate product name. Text promises scales
as smooth as pearls.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_8_0.png
- text: >-
p4t3ntm3ds, Steampunk inventor Dr. Cogsworth showcasing 'Aether Energy
Drops' amidst gears and pipes. Victorian text font explains how it powers
both man and machine.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_9_0.png
- text: >-
p4t3ntm3ds, Caveman Grog and cavewoman Uga drinking from pond filled with
'Prehistoric Vitality Water'. Friendly dinosaurs in background. Stone
tablet text claims evolutionary advantages.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_10_0.png
- text: >-
p4t3ntm3ds, Dapper gentleman from 1890s, Phileas, and futuristic woman
from 2090, Nova, toasting with 'Temporal Tonic'. Swirling time vortex in
background. Text promises to cure past ailments and prevent future ones.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_11_0.png
- text: >-
p4t3ntm3ds, Alien being Zorblax demonstrating 'Universal Harmony Elixir'
to crowd of various Earth animals. Flying saucers in sky. Text claims to
bridge the gap between all species.
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_12_0.png
Flux-Patent-Medicines-LoKr
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
No validation prompt was used during training.
None
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 2
- Training steps: 2200
- Learning rate: 0.0008
- Max grad norm: 2.0
- Effective batch size: 4
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matchingNone
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
patent-meds-512
- Repeats: 17
- Total number of images: 83
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
patent-meds-768
- Repeats: 17
- Total number of images: 83
- Total number of aspect buckets: 7
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
patent-meds-1024
- Repeats: 5
- Total number of images: 83
- Total number of aspect buckets: 17
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")