davidrd123's picture
Model card auto-generated by SimpleTuner
b510e63 verified
|
raw
history blame
6.93 kB
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- safe-for-work
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'p4t3ntm3ds, Elegant Victorian lady, Cordelia, holding a bottle of ''Dr. Worthington''s Miracle Elixir''. She stands in an ornate parlor. Text proclaims the elixir''s ability to cure all ailments and restore youth.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'p4t3ntm3ds, Muscular man, Reginald, flexing while surrounded by bottles of ''Hercules Strength Tonic''. Ornate border includes before-and-after vignettes. Bold text promises instant muscle growth.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'p4t3ntm3ds, Professor Thaddeus demonstrating ''Cerebral Enhancement Drops'' to attentive students. Blackboard filled with complex equations. Text boasts improved mental acuity and memory.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'p4t3ntm3ds, Socialite Genevieve applying ''Madame Rosaline''s Beauty Cream''. Mirror reflects her radiant complexion. Floral border surrounds testimonials from satisfied customers.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'p4t3ntm3ds, The Thompson family gathered around table with ''Vitality Biscuits'' box. Each family member exhibits a different benefit: strength, beauty, intelligence. Text explains unique formula.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'p4t3ntm3ds, Futuristic robot, Model X-29, holding ''Cyber Tonic 3000'' in art nouveau style laboratory. Text in LED display promises enhanced processing power and rust prevention.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'p4t3ntm3ds, Astronaut Zephyr planting flag advertising ''Cosmic Vigor Pills'' on lunar surface. Earth visible in background. Text claims protection against space radiation and zero-gravity fatigue.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'p4t3ntm3ds, Mermaid Princess Coral applying ''Sea Goddess Beauty Cream'' underwater. Fish swimming around ornate product name. Text promises scales as smooth as pearls.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
- text: 'p4t3ntm3ds, Steampunk inventor Dr. Cogsworth showcasing ''Aether Energy Drops'' amidst gears and pipes. Victorian text font explains how it powers both man and machine.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_9_0.png
- text: 'p4t3ntm3ds, Caveman Grog and cavewoman Uga drinking from pond filled with ''Prehistoric Vitality Water''. Friendly dinosaurs in background. Stone tablet text claims evolutionary advantages.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_10_0.png
- text: 'p4t3ntm3ds, Dapper gentleman from 1890s, Phileas, and futuristic woman from 2090, Nova, toasting with ''Temporal Tonic''. Swirling time vortex in background. Text promises to cure past ailments and prevent future ones.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_11_0.png
- text: 'p4t3ntm3ds, Alien being Zorblax demonstrating ''Universal Harmony Elixir'' to crowd of various Earth animals. Flying saucers in sky. Text claims to bridge the gap between all species.'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_12_0.png
---
# Flux-Patent-Medicines-LoKr
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
No validation prompt was used during training.
None
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 2
- Training steps: 2200
- Learning rate: 0.0008
- Max grad norm: 2.0
- Effective batch size: 4
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matchingNone
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### patent-meds-512
- Repeats: 17
- Total number of images: 83
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### patent-meds-768
- Repeats: 17
- Total number of images: 83
- Total number of aspect buckets: 7
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### patent-meds-1024
- Repeats: 5
- Total number of images: 83
- Total number of aspect buckets: 17
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```