davidrd123 commited on
Commit
f2f3aec
1 Parent(s): c18a1e9

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +220 -0
README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "black-forest-labs/FLUX.1-dev"
4
+ tags:
5
+ - flux
6
+ - flux-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - not-for-all-audiences
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ - text: 'In the style of a c4ss4tt oil painting, A close portrait of a young child''s face with rosy cheeks and delicate features, gentle lighting from a nearby window.'
27
+ parameters:
28
+ negative_prompt: 'blurry, cropped, ugly'
29
+ output:
30
+ url: ./assets/image_2_0.png
31
+ - text: 'In the style of a c4ss4tt oil painting, Strong window light falls across a child''s face and shoulder, creating bold shadows on their blue dress.'
32
+ parameters:
33
+ negative_prompt: 'blurry, cropped, ugly'
34
+ output:
35
+ url: ./assets/image_3_0.png
36
+ - text: 'In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.'
37
+ parameters:
38
+ negative_prompt: 'blurry, cropped, ugly'
39
+ output:
40
+ url: ./assets/image_4_0.png
41
+ - text: 'In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.'
42
+ parameters:
43
+ negative_prompt: 'blurry, cropped, ugly'
44
+ output:
45
+ url: ./assets/image_5_0.png
46
+ - text: 'In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.'
47
+ parameters:
48
+ negative_prompt: 'blurry, cropped, ugly'
49
+ output:
50
+ url: ./assets/image_6_0.png
51
+ - text: 'In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.'
52
+ parameters:
53
+ negative_prompt: 'blurry, cropped, ugly'
54
+ output:
55
+ url: ./assets/image_7_0.png
56
+ - text: 'In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.'
57
+ parameters:
58
+ negative_prompt: 'blurry, cropped, ugly'
59
+ output:
60
+ url: ./assets/image_8_0.png
61
+ ---
62
+
63
+ # Mary-Cassatt-Oil-Crops-Phase-1-Beta-2-3-SS2_0-Flux-LoKr
64
+
65
+ This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
66
+
67
+
68
+ No validation prompt was used during training.
69
+
70
+
71
+
72
+
73
+ None
74
+
75
+
76
+ ## Validation settings
77
+ - CFG: `3.0`
78
+ - CFG Rescale: `0.0`
79
+ - Steps: `20`
80
+ - Sampler: `None`
81
+ - Seed: `42`
82
+ - Resolution: `1024x1024`
83
+
84
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
85
+
86
+ You can find some example images in the following gallery:
87
+
88
+
89
+ <Gallery />
90
+
91
+ The text encoder **was not** trained.
92
+ You may reuse the base model text encoder for inference.
93
+
94
+
95
+ ## Training settings
96
+
97
+ - Training epochs: 0
98
+ - Training steps: 100
99
+ - Learning rate: 0.0006
100
+ - Max grad norm: 0.1
101
+ - Effective batch size: 4
102
+ - Micro-batch size: 4
103
+ - Gradient accumulation steps: 1
104
+ - Number of GPUs: 1
105
+ - Prediction type: flow-matching (extra parameters=['shift=2.0', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=2.0', 'flux_beta_schedule_beta=3.0'])
106
+ - Rescaled betas zero SNR: False
107
+ - Optimizer: adamw_bf16
108
+ - Precision: Pure BF16
109
+ - Quantised: Yes: int8-quanto
110
+ - Xformers: Not used
111
+ - LyCORIS Config:
112
+ ```json
113
+ {
114
+ "algo": "lokr",
115
+ "multiplier": 1.0,
116
+ "linear_dim": 10000,
117
+ "linear_alpha": 1,
118
+ "factor": 16,
119
+ "apply_preset": {
120
+ "target_module": [
121
+ "Attention",
122
+ "FeedForward"
123
+ ],
124
+ "module_algo_map": {
125
+ "Attention": {
126
+ "factor": 16
127
+ },
128
+ "FeedForward": {
129
+ "factor": 8
130
+ }
131
+ }
132
+ }
133
+ }
134
+ ```
135
+
136
+ ## Datasets
137
+
138
+ ### cassatt-detail-crops-512
139
+ - Repeats: 11
140
+ - Total number of images: 25
141
+ - Total number of aspect buckets: 10
142
+ - Resolution: 0.262144 megapixels
143
+ - Cropped: False
144
+ - Crop style: None
145
+ - Crop aspect: None
146
+ - Used for regularisation data: No
147
+ ### cassatt-detail-crops-768
148
+ - Repeats: 11
149
+ - Total number of images: 25
150
+ - Total number of aspect buckets: 11
151
+ - Resolution: 0.589824 megapixels
152
+ - Cropped: False
153
+ - Crop style: None
154
+ - Crop aspect: None
155
+ - Used for regularisation data: No
156
+ ### cassatt-detail-crops-1024
157
+ - Repeats: 5
158
+ - Total number of images: 25
159
+ - Total number of aspect buckets: 17
160
+ - Resolution: 1.048576 megapixels
161
+ - Cropped: False
162
+ - Crop style: None
163
+ - Crop aspect: None
164
+ - Used for regularisation data: No
165
+
166
+
167
+ ## Inference
168
+
169
+
170
+ ```python
171
+ import torch
172
+ from diffusers import DiffusionPipeline
173
+ from lycoris import create_lycoris_from_weights
174
+
175
+
176
+ def download_adapter(repo_id: str):
177
+ import os
178
+ from huggingface_hub import hf_hub_download
179
+ adapter_filename = "pytorch_lora_weights.safetensors"
180
+ cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
181
+ cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
182
+ path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
183
+ path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
184
+ os.makedirs(path_to_adapter, exist_ok=True)
185
+ hf_hub_download(
186
+ repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
187
+ )
188
+
189
+ return path_to_adapter_file
190
+
191
+ model_id = 'black-forest-labs/FLUX.1-dev'
192
+ adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-Crops-Phase-1-Beta-2-3-SS2_0-Flux-LoKr'
193
+ adapter_filename = 'pytorch_lora_weights.safetensors'
194
+ adapter_file_path = download_adapter(repo_id=adapter_repo_id)
195
+ pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
196
+ lora_scale = 1.0
197
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
198
+ wrapper.merge_to()
199
+
200
+ prompt = "An astronaut is riding a horse through the jungles of Thailand."
201
+
202
+
203
+ ## Optional: quantise the model to save on vram.
204
+ ## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
205
+ from optimum.quanto import quantize, freeze, qint8
206
+ quantize(pipeline.transformer, weights=qint8)
207
+ freeze(pipeline.transformer)
208
+
209
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
210
+ image = pipeline(
211
+ prompt=prompt,
212
+ num_inference_steps=20,
213
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
214
+ width=1024,
215
+ height=1024,
216
+ guidance_scale=3.0,
217
+ ).images[0]
218
+ image.save("output.png", format="PNG")
219
+ ```
220
+