import torch from dataclasses import dataclass from peft import LoraConfig, get_peft_model from transformers import LlamaForCausalLM, LlamaTokenizer @dataclass class LoraArguments: lora_r: int = 8 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_target_modules = ["q_proj", "v_proj"] lora_weight_path: str = "" bias: str = "none" if __name__ == "__main__": device = 0 lora_args = LoraArguments base_model = "TheBloke/vicuna-13B-1.1-HF" tokenizer = LlamaTokenizer.from_pretrained(base_model) model = LlamaForCausalLM.from_pretrained( base_model, load_in_8bit=True, torch_dtype=torch.float16, device_map={"": device} ) lora_config = LoraConfig( r=lora_args.lora_r, lora_alpha=lora_args.lora_alpha, lora_dropout=lora_args.lora_dropout, target_modules=lora_args.lora_target_modules, bias=lora_args.bias, task_type="CAUSAL_LM", ) model = get_peft_model(model, lora_config) weight = torch.load("pytorch_model.bin", map_location="cpu") model.load_state_dict(weight) prompt = ( "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions. " "USER: You are tasked to demonstrate your writing skills in professional or work settings for the following question.\n" "Can you help me write a speech for a graduation ceremony, inspiring and motivating the graduates to pursue their dreams and make a positive impact on the world?\n" "Output: ASSISTANT: " ) inputs = tokenizer([prompt], return_tensors="pt") inputs = {k: v.to("cuda:{}".format(device)) for k, v in inputs.items()} out = model.generate( **inputs, max_new_tokens=500, min_new_tokens=100, early_stopping=True, do_sample=True, top_k=8, temperature=0.75 ) decoded = tokenizer.decode(out[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) print (decoded)