File size: 4,721 Bytes
73754f9 5b32a4a 73754f9 5b32a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: mit
language:
- en
- fr
- es
---
# π₯ Classifiers of FinTOC 2022 Shared task winners (ISPRAS team) π₯
Classifiers of texual lines of English, French and Spanish financial prospects in PDF format for the [FinTOC 2022 Shared task](https://wp.lancs.ac.uk/cfie/fintoc2022/).
## π€ Source code π€
Training scripts are available in the repository https://github.com/ispras/dedoc/ (see `scripts/fintoc2022` directory).
## π€ Task description π€
Lines are classified in two stages:
1. Binary classification title/not title (title detection task).
2. Classification of title lines into title depth classes (TOC generation task).
There are two types of classifiers according to the stage:
1. For the first stage, **binary classifiers** are trained. They return `bool` values: `True` for title lines and `False` for non-title lines.
2. For the second stage, **target classifiers** are trained. They return `int` title depth classes from 1 to 6. More important lines have a lesser depth.
## π€ Results evaluation π€
The training dataset contains English, French, and Spanish documents, so three language categories are available ("en", "fr", "sp").
To obtain document lines, we use [dedoc](https://dedoc.readthedocs.io) library (`dedoc.readers.PdfTabbyReader`, `dedoc.readers.PdfTxtlayerReader`), so two reader categories are available ("tabby", "txt_layer").
To obtain FinTOC structure, we use our method described in [our article](https://aclanthology.org/2022.fnp-1.13.pdf) (winners of FinTOC 2022 Shared task!).
The results of our method (3-fold cross-validation on the FinTOC 2022 training dataset) for different languages and readers are given in the table below (they slightly changed since the competition finished).
As in the FinTOC 2022 Shared task, we use two metrics for results evaluation (metrics from the [article](https://aclanthology.org/2022.fnp-1.12.pdf)):
**TD** - F1 measure for the title detection task, **TOC** - harmonic mean of Inex F1 score and Inex level accuracy for the TOC generation task.
<table border="1" class="dataframe">
<thead>
<tr style="text-align: left;">
<th></th>
<th>TD 0</th>
<th>TD 1</th>
<th>TD 2</th>
<th>TD mean</th>
<th>TOC 0</th>
<th>TOC 1</th>
<th>TOC 2</th>
<th>TOC mean</th>
</tr>
</thead>
<tbody>
<tr>
<th>en_tabby</th>
<td>0.811522</td>
<td>0.833798</td>
<td>0.864239</td>
<td>0.836520</td>
<td>56.5</td>
<td>58.0</td>
<td>64.9</td>
<td>59.800000</td>
</tr>
<tr>
<th>en_txt_layer</th>
<td>0.821360</td>
<td>0.853258</td>
<td>0.833623</td>
<td>0.836081</td>
<td>57.8</td>
<td>62.1</td>
<td>57.8</td>
<td>59.233333</td>
</tr>
<tr>
<th>fr_tabby</th>
<td>0.753409</td>
<td>0.744232</td>
<td>0.782169</td>
<td>0.759937</td>
<td>51.2</td>
<td>47.9</td>
<td>51.5</td>
<td>50.200000</td>
</tr>
<tr>
<th>fr_txt_layer</th>
<td>0.740530</td>
<td>0.794460</td>
<td>0.766059</td>
<td>0.767016</td>
<td>45.6</td>
<td>52.2</td>
<td>50.1</td>
<td>49.300000</td>
</tr>
<tr>
<th>sp_tabby</th>
<td>0.606718</td>
<td>0.622839</td>
<td>0.599094</td>
<td>0.609550</td>
<td>37.1</td>
<td>43.6</td>
<td>43.4</td>
<td>41.366667</td>
</tr>
<tr>
<th>sp_txt_layer</th>
<td>0.629052</td>
<td>0.667976</td>
<td>0.446827</td>
<td>0.581285</td>
<td>46.4</td>
<td>48.8</td>
<td>30.7</td>
<td>41.966667</td>
</tr>
</tbody>
</table>
## π€ See also π€
Please see our article [ISPRAS@FinTOC-2022 shared task: Two-stage TOC generation model](https://aclanthology.org/2022.fnp-1.13.pdf)
to get more information about the FinTOC 2022 Shared task and our method of solving it.
We will be grateful, if you cite our work (see citation in BibTeX format below).
```
@inproceedings{bogatenkova-etal-2022-ispras,
title = "{ISPRAS}@{F}in{TOC}-2022 Shared Task: Two-stage {TOC} Generation Model",
author = "Bogatenkova, Anastasiia and
Belyaeva, Oksana Vladimirovna and
Perminov, Andrew Igorevich and
Kozlov, Ilya Sergeevich",
editor = "El-Haj, Mahmoud and
Rayson, Paul and
Zmandar, Nadhem",
booktitle = "Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.fnp-1.13",
pages = "89--94"
}
``` |