File size: 2,285 Bytes
ae97ecf 400254b ae97ecf 400254b ae97ecf 400254b ae97ecf 400254b ae97ecf 400254b ae97ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
base_model: openai/whisper-medium
datasets:
- mozilla-foundation/common_voice_17_0
language:
- it
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: Whisper Medium it
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: it
split: test
args: it
metrics:
- type: wer
value: 5.709779804285139
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: it_it
split: test
metrics:
- type: wer
value: 4.47
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium it
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1462
- Wer: 5.7098
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.1755 | 0.1730 | 1000 | 0.1974 | 8.0595 |
| 0.157 | 0.3461 | 2000 | 0.1776 | 7.1199 |
| 0.1287 | 0.5191 | 3000 | 0.1622 | 6.5201 |
| 0.1287 | 0.6922 | 4000 | 0.1521 | 5.9863 |
| 0.1168 | 0.8652 | 5000 | 0.1462 | 5.7098 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|