File size: 2,966 Bytes
226c12e 25fb756 226c12e 25fb756 226c12e 69207ea 226c12e 25fb756 226c12e 25fb756 226c12e 69207ea 226c12e 25fb756 226c12e 69207ea 226c12e 69207ea f1b377f 42df875 226c12e 25fb756 226c12e 25fb756 226c12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
language:
- it
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
base_model: openai/whisper-medium
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Medium Mixed-Italian
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_17_0 it
type: mozilla-foundation/common_voice_17_0
config: it
split: test
args: it
metrics:
- type: wer
value: 6.840122206312234
name: Wer
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: it_it
split: test
metrics:
- type: wer
value: 3.75
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/multilingual_librispeech
type: facebook/multilingual_librispeech
config: italian
split: test
metrics:
- type: wer
value: 11.44
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: facebook/voxpopuli
type: facebook/voxpopuli
config: it
split: test
metrics:
- type: wer
value: 17.94
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Mixed-Italian
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 it dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1318
- Wer: 6.8401
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1502 | 0.2 | 1000 | 0.1708 | 9.0922 |
| 0.1584 | 0.4 | 2000 | 0.1554 | 8.1757 |
| 0.1309 | 0.6 | 3000 | 0.1426 | 7.4142 |
| 0.0984 | 0.8 | 4000 | 0.1370 | 7.1298 |
| 0.0933 | 1.0 | 5000 | 0.1318 | 6.8401 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|