--- language: - it license: apache-2.0 tags: - whisper-event - generated_from_trainer base_model: openai/whisper-medium datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Medium Mixed-Italian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_17_0 it type: mozilla-foundation/common_voice_17_0 config: it split: test args: it metrics: - type: wer value: 6.840122206312234 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: it_it split: test metrics: - type: wer value: 3.75 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/multilingual_librispeech type: facebook/multilingual_librispeech config: italian split: test metrics: - type: wer value: 11.44 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: it split: test metrics: - type: wer value: 17.94 name: WER --- # Whisper Medium Mixed-Italian This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_17_0 it dataset. It achieves the following results on the evaluation set: - Loss: 0.1318 - Wer: 6.8401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1502 | 0.2 | 1000 | 0.1708 | 9.0922 | | 0.1584 | 0.4 | 2000 | 0.1554 | 8.1757 | | 0.1309 | 0.6 | 3000 | 0.1426 | 7.4142 | | 0.0984 | 0.8 | 4000 | 0.1370 | 7.1298 | | 0.0933 | 1.0 | 5000 | 0.1318 | 6.8401 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1