deepdml's picture
Update README.md
3871800 verified
metadata
language:
  - gl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small gl
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: gl
          split: test
          args: gl
        metrics:
          - name: Wer
            type: wer
            value: 15.689798175283384
pipeline_tag: automatic-speech-recognition

Whisper Small gl

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3490
  • Wer: 15.6898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1839 1.8182 1000 0.2678 14.0494
0.0733 3.6364 2000 0.2725 13.9146
0.0356 5.4545 3000 0.3014 15.0055
0.0194 7.2727 4000 0.3319 14.6196
0.0141 9.0909 5000 0.3490 15.6898

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1