--- library_name: transformers --- Microsoft Table Transformer Table Structure Recognition trained on Pubtables and Fintabnet If you do not have the deepdoctection Profile of the model, please add: ```python import deepdoctection as dd dd.ModelCatalog.register("deepdoctection/tatr_tab_struct_v2/pytorch_model.bin", dd.ModelProfile( name="deepdoctection/tatr_tab_struct_v2/pytorch_model.bin", description="Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper " "Aligning benchmark datasets for table structure recognition by Smock et " "al. This model is devoted to table structure recognition and assumes to receive a slightly cropped" "table as input. It will predict rows, column and spanning cells. Use a padding of around 5 pixels", size=[115511753], tp_model=False, config="deepdoctection/tatr_tab_struct_v2/config.json", preprocessor_config="deepdoctection/tatr_tab_struct_v2/preprocessor_config.json", hf_repo_id="deepdoctection/tatr_tab_struct_v2", hf_model_name="pytorch_model.bin", hf_config_file=["config.json", "preprocessor_config.json"], categories={ "1": dd.LayoutType.table, "2": dd.LayoutType.column, "3": dd.LayoutType.row, "4": dd.CellType.column_header, "5": dd.CellType.projected_row_header, "6": dd.CellType.spanning, }, dl_library="PT", model_wrapper="HFDetrDerivedDetector", )) ``` When running the model within the deepdoctection analyzer, adjust the segmentation parameters in order to get better predictions. ```python import deepdoctection as dd analyzer = dd.get_dd_analyzer(reset_config_file=True, config_overwrite=["PT.ITEM.WEIGHTS=microsoft/tatr_v1/pytorch_model.bin", "PT.ITEM.FILTER=['table']", "PT.ITEM.PAD.TOP=5", "PT.ITEM.PAD.RIGHT=5", "PT.ITEM.PAD.BOTTOM=5", "PT.ITEM.PAD.LEFT=5", "SEGMENTATION.THRESHOLD_ROWS=0.9", "SEGMENTATION.THRESHOLD_COLS=0.9", "SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS=0.3", "SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS=0.3", "WORD_MATCHING.MAX_PARENT_ONLY=True"]) ```