|
--- |
|
language: de |
|
license: mit |
|
tags: |
|
- exbert |
|
--- |
|
|
|
## Overview |
|
**Language model:** gbert-large-sts |
|
|
|
**Language:** German |
|
**Training data:** German STS benchmark train and dev set |
|
**Eval data:** German STS benchmark test set |
|
**Infrastructure**: 1x V100 GPU |
|
**Published**: August 12th, 2021 |
|
|
|
## Details |
|
- We trained a gbert-large model on the task of estimating semantic similarity of German-language text pairs. The dataset is a machine-translated version of the [STS benchmark](https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark), which is available [here](https://github.com/t-systems-on-site-services-gmbh/german-STSbenchmark). |
|
|
|
## Hyperparameters |
|
``` |
|
batch_size = 16 |
|
n_epochs = 4 |
|
warmup_ratio = 0.1 |
|
learning_rate = 2e-5 |
|
lr_schedule = LinearWarmup |
|
``` |
|
## Performance |
|
Stay tuned... and watch out for new papers on arxiv.org ;) |
|
|
|
## Authors |
|
- Julian Risch: `julian.risch [at] deepset.ai` |
|
- Timo Möller: `timo.moeller [at] deepset.ai` |
|
- Julian Gutsch: `julian.gutsch [at] deepset.ai` |
|
- Malte Pietsch: `malte.pietsch [at] deepset.ai` |
|
|
|
## About us |
|
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo) |
|
We bring NLP to the industry via open source! |
|
Our focus: Industry specific language models & large scale QA systems. |
|
|
|
Some of our work: |
|
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert) |
|
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad) |
|
- [FARM](https://github.com/deepset-ai/FARM) |
|
- [Haystack](https://github.com/deepset-ai/haystack/) |
|
|
|
Get in touch: |
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai) |
|
|
|
By the way: [we're hiring!](http://www.deepset.ai/jobs) |
|
|