--- language: en license: cc-by-4.0 datasets: - squad_v2 model-index: - name: deepset/minilm-uncased-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 76.1921 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmViZTQ3YTBjYTc3ZDQzYmI1Mzk3MTAxM2MzNjdmMTc0MWY4Yzg2MWU3NGQ1MDJhZWI2NzY0YWYxZTY2OTgzMiIsInZlcnNpb24iOjF9.s4XCRs_pvW__LJ57dpXAEHD6NRsQ3XaFrM1xaguS6oUs5fCN77wNNc97scnfoPXT18A8RAn0cLTNivfxZm0oBA - type: f1 value: 79.5483 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJlYTIyOTg2NjMyMzg4NzNlNGIzMTY2NDVkMjg0ODdiOWRmYjVkZDYyZjBjNWNiNTBhNjcwOWUzMDM4ZWJiZiIsInZlcnNpb24iOjF9.gxpwIBBA3_5xPi-TaZcqWNnGgCiHzxaUNgrS2jucxoVWGxhBtnPdwKVCxLleQoDDZenAXB3Yh71zMP3xTSeHCw --- # MiniLM-L12-H384-uncased for Extractive QA ## Overview **Language model:** microsoft/MiniLM-L12-H384-uncased **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline) **Infrastructure**: 1x Tesla v100 ## Hyperparameters ``` seed=42 batch_size = 12 n_epochs = 4 base_LM_model = "microsoft/MiniLM-L12-H384-uncased" max_seq_len = 384 learning_rate = 4e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 grad_acc_steps=4 ``` ## Usage ### In Haystack Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/): ```python # After running pip install haystack-ai "transformers[torch,sentencepiece]" from haystack import Document from haystack.components.readers import ExtractiveReader docs = [ Document(content="Python is a popular programming language"), Document(content="python ist eine beliebte Programmiersprache"), ] reader = ExtractiveReader(model="deepset/minilm-uncased-squad2") reader.warm_up() question = "What is a popular programming language?" result = reader.run(query=question, documents=docs) # {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]} ``` For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline). ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/minilm-uncased-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 76.13071675229513, "f1": 79.49786500219953, "total": 11873, "HasAns_exact": 78.35695006747639, "HasAns_f1": 85.10090269418276, "HasAns_total": 5928, "NoAns_exact": 73.91084945332211, "NoAns_f1": 73.91084945332211, "NoAns_total": 5945 ``` ## Authors **Vaishali Pal:** vaishali.pal@deepset.ai **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)