File size: 4,863 Bytes
b84ed2c
a75ac21
b84ed2c
9fdd591
b84ed2c
 
 
 
0357f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84ed2c
 
350a9ad
 
36ec0f8
b84ed2c
af4e144
9fdd591
350a9ad
 
 
 
 
b84ed2c
 
350a9ad
b84ed2c
75e1ff4
 
b84ed2c
 
 
 
75e1ff4
b84ed2c
 
350a9ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b84ed2c
350a9ad
b84ed2c
af4e144
 
b84ed2c
 
 
9276808
 
 
 
 
b84ed2c
350a9ad
9276808
 
350a9ad
9276808
 
350a9ad
 
 
 
 
 
 
 
b84ed2c
 
 
350a9ad
 
 
 
8ada643
350a9ad
2d70a8e
b84ed2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language: multilingual
datasets:
- squad_v2
license: mit
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
tags:
- exbert
model-index:
- name: deepset/xlm-roberta-base-squad2-distilled
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - name: Exact Match
      type: exact_match
      value: 75.2633
      verified: true
    - name: F1
      type: f1
      value: 78.3188
      verified: true
---

# deepset/xlm-roberta-base-squad2-distilled
- haystack's distillation feature was used for training. deepset/xlm-roberta-large-squad2 was used as the teacher model.

## Overview
**Language model:** deepset/xlm-roberta-base-squad2-distilled   
**Language:** Multilingual  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)  
**Infrastructure**: 1x Tesla v100

## Hyperparameters

```
batch_size = 56
n_epochs = 4
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 3
distillation_loss_weight = 0.75
```

## Usage

### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled")
# or 
reader = TransformersReader(model_name_or_path="deepset/xlm-roberta-base-squad2-distilled",tokenizer="deepset/xlm-roberta-base-squad2-distilled")
```
For a complete example of ``deepset/xlm-roberta-base-squad2-distilled`` being used for  [question answering], check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/xlm-roberta-base-squad2-distilled"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Performance
Evaluated on the SQuAD 2.0 dev set
```
"exact": 74.06721131980123%
"f1": 76.39919553344667%
```

## Authors
**Timo Möller:** timo.moeller@deepset.ai    
**Julian Risch:** julian.risch@deepset.ai    
**Malte Pietsch:** malte.pietsch@deepset.ai    
**Michel Bartels:** michel.bartels@deepset.ai    

## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
   <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.


Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)