# streamlit run app.py import streamlit as st import tensorflow as tf import numpy as np from PIL import Image import requests from io import BytesIO from bs4 import BeautifulSoup import pandas as pd import os def download_model(model_url, model_path): if not os.path.exists(model_path): response = requests.get(model_url) with open(model_path, 'wb') as f: f.write(response.content) def load_model(model_path): interpreter = tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() return interpreter def preprocess_image(image, input_size): image = image.convert('RGB') image = image.resize((input_size, input_size)) image_np = np.array(image, dtype=np.float32) image_np = np.expand_dims(image_np, axis=0) image_np = image_np / 255.0 # Normalize to [0, 1] return image_np def run_inference(interpreter, input_data): input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data_shopping_intent = interpreter.get_tensor(output_details[0]['index']) return output_data_shopping_intent def fetch_images_from_url(url): response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') img_tags = soup.find_all('img') img_urls = [img['src'] for img in img_tags if 'src' in img.attrs] return img_urls def render_intent_bars(labels, percentages): for label, percentage in zip(labels, percentages): bar_html = f"""
{label}
{percentage:.2f}%
""" st.markdown(bar_html, unsafe_allow_html=True) def main(): st.set_page_config(layout="wide") st.title("Shopping Intent Classification - SEO by DEJAN") st.markdown(""" Multi-label image classification model [extracted from Chrome](https://dejanmarketing.com/product-image-optimisation-with-chromes-convolutional-neural-network/). The model can be deployed in an automated pipeline capable of classifying product images in bulk. Javascript-based website scraping currently unsupported. """) st.write("Enter a URL to fetch and classify all images on the page:") model_url = "https://huggingface.co/dejanseo/shopping-intent/resolve/main/model.tflite" model_path = "model.tflite" download_model(model_url, model_path) url = st.text_input("Enter URL") if url: img_urls = fetch_images_from_url(url) if img_urls: st.write(f"Found {len(img_urls)} images") interpreter = load_model(model_path) input_details = interpreter.get_input_details() input_shape = input_details[0]['shape'] input_size = input_shape[1] # assuming square input categories = [ "No Shopping Intent", "Fashion & Style", "Home & Garden", "Tools, Vehicles, Electronics & Appliances" ] for img_url in img_urls: try: response = requests.get(img_url) image = Image.open(BytesIO(response.content)) input_data = preprocess_image(image, input_size) output_data_shopping_intent = run_inference(interpreter, input_data) shopping_intent_percentages = (output_data_shopping_intent.flatten() * 100).tolist() col1, col2 = st.columns([1, 3]) with col1: st.image(image.resize((224, 224)), width=224) with col2: st.write(f"[URL]({img_url})") render_intent_bars(categories, shopping_intent_percentages) st.write("---") except Exception as e: st.write(f"Could not process image {img_url}: {e}") st.markdown(""" Interested in using this in an automated pipeline for bulk image classification? Please [book an appointment](https://dejanmarketing.com/conference/) to discuss your needs. """) if __name__ == "__main__": main()