File size: 12,349 Bytes
b98c608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import argparse
import inspect
from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
from .unet import SuperResModel, UNetModel, EncoderUNetModel
NUM_CLASSES = 1000
def diffusion_defaults():
"""
Defaults for image and classifier training.
"""
return dict(
learn_sigma=False,
diffusion_steps=1000,
noise_schedule="linear",
timestep_respacing="",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
)
def classifier_defaults():
"""
Defaults for classifier models.
"""
return dict(
image_size=64,
classifier_use_fp16=False,
classifier_width=128,
classifier_depth=2,
classifier_attention_resolutions="32,16,8", # 16
classifier_use_scale_shift_norm=True, # False
classifier_resblock_updown=True, # False
classifier_pool="attention",
)
def model_and_diffusion_defaults():
"""
Defaults for image training.
"""
res = dict(
image_size=64,
num_channels=128,
num_res_blocks=2,
num_heads=4,
num_heads_upsample=-1,
num_head_channels=-1,
attention_resolutions="16,8",
channel_mult="",
dropout=0.0,
class_cond=False,
use_checkpoint=False,
use_scale_shift_norm=True,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
)
res.update(diffusion_defaults())
return res
def classifier_and_diffusion_defaults():
res = classifier_defaults()
res.update(diffusion_defaults())
return res
def create_model_and_diffusion(
image_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
channel_mult,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
use_new_attention_order,
):
model = create_model(
image_size,
num_channels,
num_res_blocks,
channel_mult=channel_mult,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
use_new_attention_order=use_new_attention_order,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return model, diffusion
def create_model(
image_size,
num_channels,
num_res_blocks,
channel_mult="",
learn_sigma=False,
class_cond=False,
use_checkpoint=False,
attention_resolutions="16",
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
dropout=0,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
):
if channel_mult == "":
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
else:
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
return UNetModel(
image_size=image_size,
in_channels=3,
model_channels=num_channels,
out_channels=(3 if not learn_sigma else 6),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
)
def create_classifier_and_diffusion(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
learn_sigma,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
):
classifier = create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return classifier, diffusion
def create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
):
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
attention_ds = []
for res in classifier_attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
return EncoderUNetModel(
image_size=image_size,
in_channels=3,
model_channels=classifier_width,
out_channels=1000,
num_res_blocks=classifier_depth,
attention_resolutions=tuple(attention_ds),
channel_mult=channel_mult,
use_fp16=classifier_use_fp16,
num_head_channels=64,
use_scale_shift_norm=classifier_use_scale_shift_norm,
resblock_updown=classifier_resblock_updown,
pool=classifier_pool,
)
def sr_model_and_diffusion_defaults():
res = model_and_diffusion_defaults()
res["large_size"] = 256
res["small_size"] = 64
arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
for k in res.copy().keys():
if k not in arg_names:
del res[k]
return res
def sr_create_model_and_diffusion(
large_size,
small_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
):
model = sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return model, diffusion
def sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma,
class_cond,
use_checkpoint,
attention_resolutions,
num_heads,
num_head_channels,
num_heads_upsample,
use_scale_shift_norm,
dropout,
resblock_updown,
use_fp16,
):
_ = small_size # hack to prevent unused variable
if large_size == 512:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported large size: {large_size}")
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(large_size // int(res))
return SuperResModel(
image_size=large_size,
in_channels=3,
model_channels=num_channels,
out_channels=(3 if not learn_sigma else 6),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
def create_gaussian_diffusion(
*,
steps=1000,
learn_sigma=False,
sigma_small=False,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
):
betas = gd.get_named_beta_schedule(noise_schedule, steps)
if use_kl:
loss_type = gd.LossType.RESCALED_KL
elif rescale_learned_sigmas:
loss_type = gd.LossType.RESCALED_MSE
else:
loss_type = gd.LossType.MSE
if not timestep_respacing:
timestep_respacing = [steps]
return SpacedDiffusion(
use_timesteps=space_timesteps(steps, timestep_respacing),
betas=betas,
model_mean_type=(
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
),
model_var_type=(
(
gd.ModelVarType.FIXED_LARGE
if not sigma_small
else gd.ModelVarType.FIXED_SMALL
)
if not learn_sigma
else gd.ModelVarType.LEARNED_RANGE
),
loss_type=loss_type,
rescale_timesteps=rescale_timesteps,
)
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys):
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")
|