File size: 10,604 Bytes
b98c608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import copy
import functools
import os

import blobfile as bf
import torch as th
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW

from . import dist_util, logger
from .fp16_util import MixedPrecisionTrainer
from .nn import update_ema
from .resample import LossAwareSampler, UniformSampler

# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0


class TrainLoop:
    def __init__(
        self,
        *,
        model,
        diffusion,
        data,
        batch_size,
        microbatch,
        lr,
        ema_rate,
        log_interval,
        save_interval,
        resume_checkpoint,
        use_fp16=False,
        fp16_scale_growth=1e-3,
        schedule_sampler=None,
        weight_decay=0.0,
        lr_anneal_steps=0,
    ):
        self.model = model
        self.diffusion = diffusion
        self.data = data
        self.batch_size = batch_size
        self.microbatch = microbatch if microbatch > 0 else batch_size
        self.lr = lr
        self.ema_rate = (
            [ema_rate]
            if isinstance(ema_rate, float)
            else [float(x) for x in ema_rate.split(",")]
        )
        self.log_interval = log_interval
        self.save_interval = save_interval
        self.resume_checkpoint = resume_checkpoint
        self.use_fp16 = use_fp16
        self.fp16_scale_growth = fp16_scale_growth
        self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
        self.weight_decay = weight_decay
        self.lr_anneal_steps = lr_anneal_steps

        self.step = 0
        self.resume_step = 0
        self.global_batch = self.batch_size * dist.get_world_size()

        self.sync_cuda = th.cuda.is_available()

        self._load_and_sync_parameters()
        self.mp_trainer = MixedPrecisionTrainer(
            model=self.model,
            use_fp16=self.use_fp16,
            fp16_scale_growth=fp16_scale_growth,
        )

        self.opt = AdamW(
            self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay
        )
        if self.resume_step:
            self._load_optimizer_state()
            # Model was resumed, either due to a restart or a checkpoint
            # being specified at the command line.
            self.ema_params = [
                self._load_ema_parameters(rate) for rate in self.ema_rate
            ]
        else:
            self.ema_params = [
                copy.deepcopy(self.mp_trainer.master_params)
                for _ in range(len(self.ema_rate))
            ]

        if th.cuda.is_available():
            self.use_ddp = True
            self.ddp_model = DDP(
                self.model,
                device_ids=[dist_util.dev()],
                output_device=dist_util.dev(),
                broadcast_buffers=False,
                bucket_cap_mb=128,
                find_unused_parameters=False,
            )
        else:
            if dist.get_world_size() > 1:
                logger.warn(
                    "Distributed training requires CUDA. "
                    "Gradients will not be synchronized properly!"
                )
            self.use_ddp = False
            self.ddp_model = self.model

    def _load_and_sync_parameters(self):
        resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint

        if resume_checkpoint:
            self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
            if dist.get_rank() == 0:
                logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
                self.model.load_state_dict(
                    dist_util.load_state_dict(
                        resume_checkpoint, map_location=dist_util.dev()
                    )
                )

        dist_util.sync_params(self.model.parameters())

    def _load_ema_parameters(self, rate):
        ema_params = copy.deepcopy(self.mp_trainer.master_params)

        main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
        ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
        if ema_checkpoint:
            if dist.get_rank() == 0:
                logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
                state_dict = dist_util.load_state_dict(
                    ema_checkpoint, map_location=dist_util.dev()
                )
                ema_params = self.mp_trainer.state_dict_to_master_params(state_dict)

        dist_util.sync_params(ema_params)
        return ema_params

    def _load_optimizer_state(self):
        main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
        opt_checkpoint = bf.join(
            bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
        )
        if bf.exists(opt_checkpoint):
            logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
            state_dict = dist_util.load_state_dict(
                opt_checkpoint, map_location=dist_util.dev()
            )
            self.opt.load_state_dict(state_dict)

    def run_loop(self):
        while (
            not self.lr_anneal_steps
            or self.step + self.resume_step < self.lr_anneal_steps
        ):
            batch, cond = next(self.data)
            self.run_step(batch, cond)
            if self.step % self.log_interval == 0:
                logger.dumpkvs()
            if self.step % self.save_interval == 0:
                self.save()
                # Run for a finite amount of time in integration tests.
                if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
                    return
            self.step += 1
        # Save the last checkpoint if it wasn't already saved.
        if (self.step - 1) % self.save_interval != 0:
            self.save()

    def run_step(self, batch, cond):
        self.forward_backward(batch, cond)
        took_step = self.mp_trainer.optimize(self.opt)
        if took_step:
            self._update_ema()
        self._anneal_lr()
        self.log_step()

    def forward_backward(self, batch, cond):
        self.mp_trainer.zero_grad()
        for i in range(0, batch.shape[0], self.microbatch):
            micro = batch[i : i + self.microbatch].to(dist_util.dev())
            micro_cond = {
                k: v[i : i + self.microbatch].to(dist_util.dev())
                for k, v in cond.items()
            }
            last_batch = (i + self.microbatch) >= batch.shape[0]
            t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())

            compute_losses = functools.partial(
                self.diffusion.training_losses,
                self.ddp_model,
                micro,
                t,
                model_kwargs=micro_cond,
            )

            if last_batch or not self.use_ddp:
                losses = compute_losses()
            else:
                with self.ddp_model.no_sync():
                    losses = compute_losses()

            if isinstance(self.schedule_sampler, LossAwareSampler):
                self.schedule_sampler.update_with_local_losses(
                    t, losses["loss"].detach()
                )

            loss = (losses["loss"] * weights).mean()
            log_loss_dict(
                self.diffusion, t, {k: v * weights for k, v in losses.items()}
            )
            self.mp_trainer.backward(loss)

    def _update_ema(self):
        for rate, params in zip(self.ema_rate, self.ema_params):
            update_ema(params, self.mp_trainer.master_params, rate=rate)

    def _anneal_lr(self):
        if not self.lr_anneal_steps:
            return
        frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
        lr = self.lr * (1 - frac_done)
        for param_group in self.opt.param_groups:
            param_group["lr"] = lr

    def log_step(self):
        logger.logkv("step", self.step + self.resume_step)
        logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)

    def save(self):
        def save_checkpoint(rate, params):
            state_dict = self.mp_trainer.master_params_to_state_dict(params)
            if dist.get_rank() == 0:
                logger.log(f"saving model {rate}...")
                if not rate:
                    filename = f"model{(self.step+self.resume_step):06d}.pt"
                else:
                    filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
                with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
                    th.save(state_dict, f)

        save_checkpoint(0, self.mp_trainer.master_params)
        for rate, params in zip(self.ema_rate, self.ema_params):
            save_checkpoint(rate, params)

        if dist.get_rank() == 0:
            with bf.BlobFile(
                bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
                "wb",
            ) as f:
                th.save(self.opt.state_dict(), f)

        dist.barrier()


def parse_resume_step_from_filename(filename):
    """
    Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
    checkpoint's number of steps.
    """
    split = filename.split("model")
    if len(split) < 2:
        return 0
    split1 = split[-1].split(".")[0]
    try:
        return int(split1)
    except ValueError:
        return 0


def get_blob_logdir():
    # You can change this to be a separate path to save checkpoints to
    # a blobstore or some external drive.
    return logger.get_dir()


def find_resume_checkpoint():
    # On your infrastructure, you may want to override this to automatically
    # discover the latest checkpoint on your blob storage, etc.
    return None


def find_ema_checkpoint(main_checkpoint, step, rate):
    if main_checkpoint is None:
        return None
    filename = f"ema_{rate}_{(step):06d}.pt"
    path = bf.join(bf.dirname(main_checkpoint), filename)
    if bf.exists(path):
        return path
    return None


def log_loss_dict(diffusion, ts, losses):
    for key, values in losses.items():
        logger.logkv_mean(key, values.mean().item())
        # Log the quantiles (four quartiles, in particular).
        for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
            quartile = int(4 * sub_t / diffusion.num_timesteps)
            logger.logkv_mean(f"{key}_q{quartile}", sub_loss)