File size: 2,591 Bytes
50dc20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: T5_Model
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: cnn_dailymail
      type: cnn_dailymail
      config: 3.0.0
      split: test
      args: 3.0.0
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.2473
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5_Model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7795
- Rouge1: 0.2473
- Rouge2: 0.1174
- Rougel: 0.2041
- Rougelsum: 0.2042
- Gen Len: 18.9999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.0058        | 1.0   | 35890  | 1.8209          | 0.247  | 0.1174 | 0.2039 | 0.2039    | 18.9992 |
| 1.9949        | 2.0   | 71780  | 1.8004          | 0.2469 | 0.117  | 0.2036 | 0.2036    | 18.9995 |
| 1.948         | 3.0   | 107670 | 1.7938          | 0.2477 | 0.1176 | 0.2047 | 0.2047    | 18.9999 |
| 1.9459        | 4.0   | 143560 | 1.7884          | 0.2478 | 0.1182 | 0.2049 | 0.2049    | 18.9999 |
| 1.924         | 5.0   | 179450 | 1.7844          | 0.2477 | 0.1179 | 0.2045 | 0.2046    | 18.9996 |
| 1.9301        | 6.0   | 215340 | 1.7824          | 0.2477 | 0.1179 | 0.2044 | 0.2044    | 18.9999 |
| 1.9284        | 7.0   | 251230 | 1.7808          | 0.2474 | 0.1177 | 0.2044 | 0.2045    | 18.9999 |
| 1.9217        | 8.0   | 287120 | 1.7795          | 0.2473 | 0.1174 | 0.2041 | 0.2042    | 18.9999 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0