--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: T5_Model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.2473 --- # T5_Model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7795 - Rouge1: 0.2473 - Rouge2: 0.1174 - Rougel: 0.2041 - Rougelsum: 0.2042 - Gen Len: 18.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 2.0058 | 1.0 | 35890 | 1.8209 | 0.247 | 0.1174 | 0.2039 | 0.2039 | 18.9992 | | 1.9949 | 2.0 | 71780 | 1.8004 | 0.2469 | 0.117 | 0.2036 | 0.2036 | 18.9995 | | 1.948 | 3.0 | 107670 | 1.7938 | 0.2477 | 0.1176 | 0.2047 | 0.2047 | 18.9999 | | 1.9459 | 4.0 | 143560 | 1.7884 | 0.2478 | 0.1182 | 0.2049 | 0.2049 | 18.9999 | | 1.924 | 5.0 | 179450 | 1.7844 | 0.2477 | 0.1179 | 0.2045 | 0.2046 | 18.9996 | | 1.9301 | 6.0 | 215340 | 1.7824 | 0.2477 | 0.1179 | 0.2044 | 0.2044 | 18.9999 | | 1.9284 | 7.0 | 251230 | 1.7808 | 0.2474 | 0.1177 | 0.2044 | 0.2045 | 18.9999 | | 1.9217 | 8.0 | 287120 | 1.7795 | 0.2473 | 0.1174 | 0.2041 | 0.2042 | 18.9999 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0